Suppr超能文献

Optimization strategies for metabolic networks.

作者信息

Domingues Alexandre, Vinga Susana, Lemos João M

机构信息

INESC-ID - R, Alves Redol 9, 1000-029 Lisboa, Portugal.

出版信息

BMC Syst Biol. 2010 Aug 13;4:113. doi: 10.1186/1752-0509-4-113.

Abstract

BACKGROUND

The increasing availability of models and data for metabolic networks poses new challenges in what concerns optimization for biological systems. Due to the high level of complexity and uncertainty associated to these networks the suggested models often lack detail and liability, required to determine the proper optimization strategies. A possible approach to overcome this limitation is the combination of both kinetic and stoichiometric models. In this paper three control optimization methods, with different levels of complexity and assuming various degrees of process information, are presented and their results compared using a prototype network.

RESULTS

The results obtained show that Bi-Level optimization lead to a good approximation of the optimum attainable with the full information on the original network. Furthermore, using Pontryagin's Maximum Principle it is shown that the optimal control for the network in question, can only assume values on the extremes of the interval of its possible values.

CONCLUSIONS

It is shown that, for a class of networks in which the product that favors cell growth competes with the desired product yield, the optimal control that explores this trade-off assumes only extreme values. The proposed Bi-Level optimization led to a good approximation of the original network, allowing to overcome the limitation on the available information, often present in metabolic network models. Although the prototype network considered, it is stressed that the results obtained concern methods, and provide guidelines that are valid in a wider context.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d9a/2936905/e483bde62759/1752-0509-4-113-1.jpg

相似文献

1
Optimization strategies for metabolic networks.
BMC Syst Biol. 2010 Aug 13;4:113. doi: 10.1186/1752-0509-4-113.
2
Robust mutant strain design by pessimistic optimization.
BMC Genomics. 2017 Oct 3;18(Suppl 6):677. doi: 10.1186/s12864-017-4025-7.
4
Using flux balance analysis to guide microbial metabolic engineering.
Methods Mol Biol. 2012;834:197-216. doi: 10.1007/978-1-61779-483-4_13.
6
An optimization rule for in silico identification of targeted overproduction in metabolic pathways.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):914-26. doi: 10.1109/TCBB.2013.67.
7
Estimating the size of the solution space of metabolic networks.
BMC Bioinformatics. 2008 May 19;9:240. doi: 10.1186/1471-2105-9-240.
8
Dynamic optimization of biological networks under parametric uncertainty.
BMC Syst Biol. 2016 Aug 31;10(1):86. doi: 10.1186/s12918-016-0328-6.
9
Using optimal control to understand complex metabolic pathways.
BMC Bioinformatics. 2020 Oct 21;21(1):472. doi: 10.1186/s12859-020-03808-8.
10
Global dynamic optimization approach to predict activation in metabolic pathways.
BMC Syst Biol. 2014 Jan 6;8:1. doi: 10.1186/1752-0509-8-1.

引用本文的文献

1
Design constraints on a synthetic metabolism.
PLoS One. 2012;7(6):e39903. doi: 10.1371/journal.pone.0039903. Epub 2012 Jun 29.

本文引用的文献

1
OptFlux: an open-source software platform for in silico metabolic engineering.
BMC Syst Biol. 2010 Apr 19;4:45. doi: 10.1186/1752-0509-4-45.
2
Natural computation meta-heuristics for the in silico optimization of microbial strains.
BMC Bioinformatics. 2008 Nov 27;9:499. doi: 10.1186/1471-2105-9-499.
3
Modeling, optimization, and computer control of the cephalosporin C fermentation process.
Biotechnol Bioeng. 1988 Jul 20;32(3):277-88. doi: 10.1002/bit.260320304.
4
Stoichiometric modelling of cell metabolism.
J Biosci Bioeng. 2008 Jan;105(1):1-11. doi: 10.1263/jbb.105.1.
5
Optimization of biotechnological systems through geometric programming.
Theor Biol Med Model. 2007 Sep 26;4:38. doi: 10.1186/1742-4682-4-38.
7
Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology.
Bioinformatics. 2006 Feb 15;22(4):514-5. doi: 10.1093/bioinformatics/bti799. Epub 2005 Nov 29.
10
Metabolic modelling of microbes: the flux-balance approach.
Environ Microbiol. 2002 Mar;4(3):133-40. doi: 10.1046/j.1462-2920.2002.00282.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验