Guillén-Gosálbez Gonzalo, Miró Antoni, Alves Rui, Sorribas Albert, Jiménez Laureano
Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av,Països Catalans 26, 43007 Tarragona, Spain.
BMC Syst Biol. 2013 Oct 31;7:113. doi: 10.1186/1752-0509-7-113.
Recovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.
Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions.
The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters.
从时间序列数据中恢复网络拓扑结构和相关动力学参数值是系统生物学的核心课题。然而,能够同时完成这两项任务的方法很少且缺乏通用性。
在此,我们提出了一种从时间序列数据中同时估计生化网络参数和调控拓扑结构的严谨方法。参数估计任务被表述为一个混合整数动态优化问题,其中:(i)二元变量,用于对网络过程中调控相互作用的存在和代谢物的动力学效应进行建模;(ii)连续变量,表示代谢物浓度和动力学参数值。该方法同时优化赤池准则,该准则捕捉了复杂度(由参数数量衡量)与拟合精度之间的权衡。这种同时优化减轻了因添加虚假调控相互作用可能导致的过拟合。
我们的方法的能力在一个基准问题中得到了测试。我们的算法能够识别出一组具有相关参数的合理网络拓扑结构。