Dept. of Electrical and Computer Engineering, Texas A&M University, College Station, 77843, USA.
Dept. of Industrial Engineering, University of Pittsburgh, Pittsburgh, 15260, USA.
BMC Genomics. 2017 Oct 3;18(Suppl 6):677. doi: 10.1186/s12864-017-4025-7.
Flux Balance Analysis (FBA) based mathematical modeling enables in silico prediction of systems behavior for genome-scale metabolic networks. Computational methods have been derived in the FBA framework to solve bi-level optimization for deriving "optimal" mutant microbial strains with targeted biochemical overproduction. The common inherent assumption of these methods is that the surviving mutants will always cooperate with the engineering objective by overproducing the maximum desired biochemicals. However, it has been shown that this optimistic assumption may not be valid in practice.
We study the validity and robustness of existing bi-level methods for strain optimization under uncertainty and non-cooperative environment. More importantly, we propose new pessimistic optimization formulations: P-ROOM and P-OptKnock, aiming to derive robust mutants with the desired overproduction under two different mutant cell survival models: (1) ROOM assuming mutants have the minimum changes in reaction fluxes from wild-type flux values, and (2) the one considered by OptKnock maximizing the biomass production yield. When optimizing for desired overproduction, our pessimistic formulations derive more robust mutant strains by considering the uncertainty of the cell survival models at the inner level and the cooperation between the outer- and inner-level decision makers. For both P-ROOM and P-OptKnock, by converting multi-level formulations into single-level Mixed Integer Programming (MIP) problems based on the strong duality theorem, we can derive exact optimal solutions that are highly scalable with large networks.
Our robust formulations P-ROOM and P-OptKnock are tested with a small E. coli core metabolic network and a large-scale E. coli iAF1260 network. We demonstrate that the original bi-level formulations (ROOM and OptKnock) derive mutants that may not achieve the predicted overproduction under uncertainty and non-cooperative environment. The knockouts obtained by the proposed pessimistic formulations yield higher chemical production rates than those by the optimistic formulations. Moreover, with higher uncertainty levels, both cellular models under pessimistic approaches produce the same mutant strains.
In this paper, we propose a new pessimistic optimization framework for mutant strain design. Our pessimistic strain optimization methods produce more robust solutions regardless of the inner-level mutant survival models, which is desired as the models for cell survival are often approximate to real-world systems. Such robust and reliable knockout strategies obtained by the pessimistic formulations would provide confidence for in-vivo experimental design of microbial mutants of interest.
通量平衡分析(FBA)基于数学模型使能够对基因组规模代谢网络进行系统行为的计算预测。已经在 FBA 框架中导出了计算方法,以解决双水平优化问题,从而获得具有靶向生化过度产生的“最佳”突变微生物菌株。这些方法的一个常见固有假设是,存活的突变体将通过过度产生最大期望的生化物质始终与工程目标合作。然而,已经表明这种乐观的假设在实践中可能不成立。
我们研究了不确定性和非合作环境下基于双水平方法的现有菌株优化的有效性和稳健性。更重要的是,我们提出了新的悲观优化公式:P-ROOM 和 P-OptKnock,旨在在两种不同的突变细胞生存模型下得出具有所需过度产生的稳健突变体:(1)ROOM,假设突变体具有与野生型通量值相比反应通量的最小变化,以及(2)OptKnock 最大化生物量产生产率的模型。在优化所需的过度产生时,我们的悲观公式通过在内部级别考虑细胞生存模型的不确定性以及外部和内部决策者之间的合作,得出了更稳健的突变体菌株。对于 P-ROOM 和 P-OptKnock,通过基于强对偶定理将多级公式转换为单级混合整数规划(MIP)问题,我们可以得出高度可扩展的大型网络的精确最优解。
我们的稳健公式 P-ROOM 和 P-OptKnock 已在一个小的大肠杆菌核心代谢网络和一个大型大肠杆菌 iAF1260 网络上进行了测试。我们证明,原始的双水平公式(ROOM 和 OptKnock)在不确定性和非合作环境下得出的突变体可能无法实现预测的过度产生。与乐观公式相比,所提出的悲观公式产生的敲除物产生更高的化学产率。此外,在较高的不确定性水平下,悲观方法下的两个细胞模型都会产生相同的突变体菌株。
在本文中,我们提出了一种新的用于突变体菌株设计的悲观优化框架。无论内部突变体生存模型如何,我们的悲观菌株优化方法都能产生更稳健的解决方案,这是因为细胞生存模型通常接近实际系统。通过悲观公式获得的这种稳健可靠的敲除策略将为感兴趣的微生物突变体的体内实验设计提供信心。