Suppr超能文献

体内核糖体组装和周转的定量蛋白质组学分析。

Quantitative proteomic analysis of ribosome assembly and turnover in vivo.

机构信息

Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB-33, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

J Mol Biol. 2010 Oct 29;403(3):331-45. doi: 10.1016/j.jmb.2010.08.005. Epub 2010 Aug 13.

Abstract

Although high-resolution structures of the ribosome have been solved in a series of functional states, relatively little is known about how the ribosome assembles, particularly in vivo. Here, a general method is presented for studying the dynamics of ribosome assembly and ribosomal assembly intermediates. Since significant quantities of assembly intermediates are not present under normal growth conditions, the antibiotic neomycin is used to perturb wild-type Escherichia coli. Treatment of E. coli with the antibiotic neomycin results in the accumulation of a continuum of assembly intermediates for both the 30S and 50S subunits. The protein composition and the protein stoichiometry of these intermediates were determined by quantitative mass spectrometry using purified unlabeled and (15)N-labeled wild-type ribosomes as external standards. The intermediates throughout the continuum are heterogeneous and are largely depleted of late-binding proteins. Pulse-labeling with (15)N-labeled medium time-stamps the ribosomal proteins based on their time of synthesis. The assembly intermediates contain both newly synthesized proteins and proteins that originated in previously synthesized intact subunits. This observation requires either a significant amount of ribosome degradation or the exchange or reuse of ribosomal proteins. These specific methods can be applied to any system where ribosomal assembly intermediates accumulate, including strains with deletions or mutations of assembly factors. This general approach can be applied to study the dynamics of assembly and turnover of other macromolecular complexes that can be isolated from cells.

摘要

尽管核糖体的高分辨率结构已在一系列功能状态下得到解决,但对于核糖体如何组装,特别是在体内组装,人们知之甚少。在这里,提出了一种研究核糖体组装动力学和核糖体组装中间产物的通用方法。由于在正常生长条件下,大量的组装中间产物不存在,因此使用抗生素新霉素来干扰野生型大肠杆菌。用抗生素新霉素处理大肠杆菌会导致 30S 和 50S 亚基的组装中间体连续积累。通过使用纯化的未标记和(15)N 标记的野生型核糖体作为外部标准,通过定量质谱法确定这些中间体的蛋白质组成和蛋白质化学计量。这些中间产物在整个连续体中都是异质的,并且很大程度上缺乏晚期结合蛋白。用(15)N 标记的培养基进行脉冲标记,根据蛋白质的合成时间对核糖体蛋白进行时间标记。组装中间体既包含新合成的蛋白质,也包含源自先前合成的完整亚基的蛋白质。这一观察结果需要大量的核糖体降解,或者需要核糖体蛋白的交换或再利用。这些特定的方法可以应用于任何组装中间产物积累的系统,包括组装因子缺失或突变的菌株。这种通用方法可用于研究可从细胞中分离出的其他大分子复合物的组装和周转率的动力学。

相似文献

1
Quantitative proteomic analysis of ribosome assembly and turnover in vivo.
J Mol Biol. 2010 Oct 29;403(3):331-45. doi: 10.1016/j.jmb.2010.08.005. Epub 2010 Aug 13.
2
Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry.
J Mol Biol. 2013 Feb 22;425(4):767-79. doi: 10.1016/j.jmb.2012.11.040. Epub 2012 Dec 7.
4
Fluorescence-based monitoring of ribosome assembly landscapes.
BMC Mol Biol. 2015 Feb 25;16:3. doi: 10.1186/s12867-015-0031-y.
5
[Ribosome: lessons of a molecular factory construction].
Mol Biol (Mosk). 2014 Jul-Aug;48(4):543-60.
6
Reconstitution of 30S ribosomal subunits in vitro using ribosome biogenesis factors.
RNA. 2018 Nov;24(11):1512-1519. doi: 10.1261/rna.065615.118. Epub 2018 Aug 3.
7
Assembly of bacterial ribosomes.
Annu Rev Biochem. 2011;80:501-26. doi: 10.1146/annurev-biochem-062608-160432.
8
Selected reaction monitoring for the quantification of Escherichia coli ribosomal proteins.
PLoS One. 2020 Dec 14;15(12):e0236850. doi: 10.1371/journal.pone.0236850. eCollection 2020.
9
Validation of a fluorescence-based screening concept to identify ribosome assembly defects in Escherichia coli.
Nucleic Acids Res. 2014 Jul;42(12):e100. doi: 10.1093/nar/gku381. Epub 2014 May 3.
10
Modular Assembly of the Bacterial Large Ribosomal Subunit.
Cell. 2016 Dec 1;167(6):1610-1622.e15. doi: 10.1016/j.cell.2016.11.020.

引用本文的文献

1
Quantitative mining of compositional heterogeneity in cryo-EM datasets of ribosome assembly intermediates.
Structure. 2022 Apr 7;30(4):498-509.e4. doi: 10.1016/j.str.2021.12.005. Epub 2022 Jan 5.
2
Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly.
Biochimie. 2021 Dec;191:104-117. doi: 10.1016/j.biochi.2021.09.003. Epub 2021 Sep 8.
3
SrmB Rescues Trapped Ribosome Assembly Intermediates.
J Mol Biol. 2020 Feb 14;432(4):978-990. doi: 10.1016/j.jmb.2019.12.013. Epub 2019 Dec 23.
4
Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination.
Plant Physiol. 2020 Jan;182(1):378-392. doi: 10.1104/pp.19.00644. Epub 2019 Sep 16.
5
Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes.
Nat Commun. 2017 Sep 8;8(1):492. doi: 10.1038/s41467-017-00536-1.
6
The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation.
Nucleic Acids Res. 2016 Jul 8;44(12):5798-810. doi: 10.1093/nar/gkw493. Epub 2016 Jun 1.
7
Chemical modulators of ribosome biogenesis as biological probes.
Nat Chem Biol. 2015 Dec;11(12):924-32. doi: 10.1038/nchembio.1957. Epub 2015 Nov 17.
8
Mitochondrial ribosome assembly in health and disease.
Cell Cycle. 2015;14(14):2226-50. doi: 10.1080/15384101.2015.1053672. Epub 2015 Jun 1.
9
Dynamic control and quantification of bacterial population dynamics in droplets.
Biomaterials. 2015 Aug;61:239-45. doi: 10.1016/j.biomaterials.2015.05.038. Epub 2015 May 19.
10
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.
Genetics. 2015 Jun;200(2):443-54. doi: 10.1534/genetics.115.175851. Epub 2015 Apr 21.

本文引用的文献

1
Quantitation of the ribosomal protein autoregulatory network using mass spectrometry.
Anal Chem. 2010 Jun 15;82(12):5038-45. doi: 10.1021/ac9028664.
2
Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5417-22. doi: 10.1073/pnas.0912007107. Epub 2010 Mar 5.
3
The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution.
J Mol Biol. 2010 Apr 23;398(1):1-7. doi: 10.1016/j.jmb.2010.02.036. Epub 2010 Feb 24.
4
A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit.
Nucleic Acids Res. 2009 Oct;37(19):6503-14. doi: 10.1093/nar/gkp711. Epub 2009 Sep 4.
5
A complex assembly landscape for the 30S ribosomal subunit.
Annu Rev Biophys. 2009;38:197-215. doi: 10.1146/annurev.biophys.050708.133615.
6
An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?
Mol Cell. 2009 Jan 30;33(2):227-36. doi: 10.1016/j.molcel.2008.12.014.
7
Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ.
Mol Microbiol. 2009 Feb;71(3):748-62. doi: 10.1111/j.1365-2958.2008.06561.x. Epub 2008 Dec 11.
8
Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition.
Antimicrob Agents Chemother. 2009 Feb;53(2):563-71. doi: 10.1128/AAC.00870-08. Epub 2008 Nov 24.
9
Quantitative ESI-TOF analysis of macromolecular assembly kinetics.
Anal Chem. 2008 Dec 15;80(24):9379-86. doi: 10.1021/ac8020505.
10
Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly.
Nature. 2008 Oct 30;455(7217):1268-72. doi: 10.1038/nature07298. Epub 2008 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验