Suppr超能文献

一株稻瘟病菌细胞外木聚糖酶(MoCel6A)的酶学性质。

Characterization of a cellobiohydrolase (MoCel6A) produced by Magnaporthe oryzae.

机构信息

Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.

出版信息

Appl Environ Microbiol. 2010 Oct;76(19):6583-90. doi: 10.1128/AEM.00618-10. Epub 2010 Aug 13.

Abstract

Three GH-6 family cellobiohydrolases are expected in the genome of Magnaporthe grisea based on the complete genome sequence. Here, we demonstrate the properties, kinetics, and substrate specificities of a Magnaporthe oryzae GH-6 family cellobiohydrolase (MoCel6A). In addition, the effect of cellobiose on MoCel6A activity was also investigated. MoCel6A contiguously fused to a histidine tag was overexpressed in M. oryzae and purified by affinity chromatography. MoCel6A showed higher hydrolytic activities on phosphoric acid-swollen cellulose (PSC), β-glucan, and cellooligosaccharide derivatives than on cellulose, of which the best substrates were cellooligosaccharides. A tandemly aligned cellulose binding domain (CBD) at the N terminus caused increased activity on cellulose and PSC, whereas deletion of the CBD (catalytic domain only) showed decreased activity on cellulose. MoCel6A hydrolysis of cellooligosaccharides and sulforhodamine-conjugated cellooligosaccharides was not inhibited by exogenously adding cellobiose up to 438 mM, which, rather, enhanced activity, whereas a GH-7 family cellobiohydrolase from M. oryzae (MoCel7A) was severely inhibited by more than 29 mM cellobiose. Furthermore, we assessed the effects of cellobiose on hydrolytic activities using MoCel6A and Trichoderma reesei cellobiohydrolase (TrCel6A), which were prepared in Aspergillus oryzae. MoCel6A showed increased hydrolysis of cellopentaose used as a substrate in the presence of 292 mM cellobiose at pH 4.5 and pH 6.0, and enhanced activity disappeared at pH 9.0. In contrast, TrCel6A exhibited slightly increased hydrolysis at pH 4.5, and hydrolysis was severely inhibited at pH 9.0. These results suggest that enhancement or inhibition of hydrolytic activities by cellobiose is dependent on the reaction mixture pH.

摘要

根据完整的基因组序列,预计稻瘟病菌基因组中有 3 种 GH-6 家族纤维二糖水解酶。在这里,我们展示了稻瘟病菌 GH-6 家族纤维二糖水解酶(MoCel6A)的性质、动力学和底物特异性。此外,还研究了纤维二糖对 MoCel6A 活性的影响。MoCel6A 与组氨酸标签连续融合,在稻瘟病菌中过表达,并通过亲和层析纯化。MoCel6A 对磷酸膨胀纤维素(PSC)、β-葡聚糖和纤维寡糖衍生物的水解活性高于纤维素,其中最佳底物是纤维寡糖。N 端串联排列的纤维素结合结构域(CBD)导致对纤维素和 PSC 的活性增加,而 CBD(仅催化结构域)缺失导致对纤维素的活性降低。MoCel6A 水解纤维寡糖和磺基罗丹明缀合纤维寡糖不受高达 438mM 外源添加纤维二糖的抑制,反而增强了活性,而来自稻瘟病菌的 GH-7 家族纤维二糖水解酶(MoCel7A)则被超过 29mM 的纤维二糖严重抑制。此外,我们使用在米曲霉中制备的 MoCel6A 和里氏木霉纤维二糖水解酶(TrCel6A)评估了纤维二糖对水解活性的影响。在 pH4.5 和 pH6.0 下,当使用纤维五糖作为底物时,MoCel6A 在存在 292mM 纤维二糖的情况下显示出增强的水解作用,并且增强的活性在 pH9.0 时消失。相比之下,TrCel6A 在 pH4.5 时表现出轻微增加的水解作用,而在 pH9.0 时水解严重抑制。这些结果表明,纤维二糖对水解活性的增强或抑制取决于反应混合物的 pH 值。

相似文献

1
Characterization of a cellobiohydrolase (MoCel6A) produced by Magnaporthe oryzae.
Appl Environ Microbiol. 2010 Oct;76(19):6583-90. doi: 10.1128/AEM.00618-10. Epub 2010 Aug 13.
2
Biochemical characterization of Magnaporthe oryzae β-glucosidases for efficient β-glucan hydrolysis.
Appl Microbiol Biotechnol. 2011 Aug;91(4):1073-82. doi: 10.1007/s00253-011-3340-1. Epub 2011 May 29.
4
Degradation and synthesis of β-glucans by a Magnaporthe oryzae endotransglucosylase, a member of the glycoside hydrolase 7 family.
J Biol Chem. 2013 May 10;288(19):13821-30. doi: 10.1074/jbc.M112.448902. Epub 2013 Mar 25.
5
A bacterial GH6 cellobiohydrolase with a novel modular structure.
Appl Microbiol Biotechnol. 2017 Apr;101(7):2943-2952. doi: 10.1007/s00253-017-8129-4. Epub 2017 Jan 25.
6
A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation.
Appl Microbiol Biotechnol. 2017 Feb;101(3):1175-1188. doi: 10.1007/s00253-016-7895-8. Epub 2016 Oct 14.
8
Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases.
J Biol Chem. 2020 Oct 23;295(43):14606-14617. doi: 10.1074/jbc.RA120.014792. Epub 2020 Aug 18.
9
Redefining XynA from Penicillium funiculosum IMI 378536 as a GH7 cellobiohydrolase.
J Ind Microbiol Biotechnol. 2012 Nov;39(11):1569-76. doi: 10.1007/s10295-012-1166-1. Epub 2012 Jul 10.
10
The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity.
Appl Microbiol Biotechnol. 2010 Mar;86(2):525-33. doi: 10.1007/s00253-009-2231-1. Epub 2009 Oct 15.

引用本文的文献

3
Enhancement of catalytic activity and alkaline stability of cellobiohydrolase by structure-based protein engineering.
3 Biotech. 2022 Oct;12(10):269. doi: 10.1007/s13205-022-03339-4. Epub 2022 Sep 9.
4
The potential of plant proteins as antifungal agents for agricultural applications.
Synth Syst Biotechnol. 2022 Jul 16;7(4):1075-1083. doi: 10.1016/j.synbio.2022.06.009. eCollection 2022 Dec.
8
Genomics review of holocellulose deconstruction by aspergilli.
Microbiol Mol Biol Rev. 2014 Dec;78(4):588-613. doi: 10.1128/MMBR.00019-14.
10
The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana.
Plant Cell. 2014 Oct;26(10):3949-63. doi: 10.1105/tpc.114.131631. Epub 2014 Oct 17.

本文引用的文献

1
Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay.
Appl Biochem Biotechnol. 2010 May;161(1-8):313-7. doi: 10.1007/s12010-009-8796-4. Epub 2009 Oct 16.
2
Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.
Microbiol Res. 2009;164(6):642-9. doi: 10.1016/j.micres.2008.12.001. Epub 2009 Feb 20.
3
From cellulosomes to cellulosomics.
Chem Rec. 2008;8(6):364-77. doi: 10.1002/tcr.20160.
4
Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects.
Biotechnol Bioeng. 1993 Oct;42(8):1002-13. doi: 10.1002/bit.260420811.
5
Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor.
Appl Microbiol Biotechnol. 2007 May;75(2):337-46. doi: 10.1007/s00253-006-0824-5. Epub 2007 Mar 1.
6
Biomass recalcitrance: engineering plants and enzymes for biofuels production.
Science. 2007 Feb 9;315(5813):804-7. doi: 10.1126/science.1137016.
7
The genome sequence of the rice blast fungus Magnaporthe grisea.
Nature. 2005 Apr 21;434(7036):980-6. doi: 10.1038/nature03449.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验