Suppr超能文献

恒河猴(Macaca mulatta)声带的弹性和应力松弛。

Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds.

机构信息

Department of Biology and National Center for Voice and Speech, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Exp Biol. 2010 Sep;213(Pt 17):2924-32. doi: 10.1242/jeb.044404.

Abstract

Fundamental frequency is an important perceptual parameter for acoustic communication in mammals. It is determined by vocal fold oscillation, which depends on the morphology and viscoelastic properties of the oscillating tissue. In this study, I tested if stress-strain and stress-relaxation behavior of rhesus monkey (Macaca mulatta) vocal folds allows the prediction of a species' natural fundamental frequency range across its entire vocal repertoire as well as of frequency contours within a single call type. In tensile tests, the load-strain and stress-relaxation behavior of rhesus monkey vocal folds and ventricular folds has been examined. Using the string model, predictions about the species' fundamental frequency range, individual variability, as well as the frequency contour of 'coo' calls were made. The low- and mid-frequency range (up to 2 kHz) of rhesus monkeys can be predicted relatively well with the string model. The discrepancy between predicted maximum fundamental frequency and what has been recorded in rhesus monkeys is currently ascribed to the difficulty in predicting the behavior of the lamina propria at very high strain. Histological sections of the vocal fold and different staining techniques identified collagen, elastin, hyaluronan and, surprisingly, fat cells as components of the lamina propria. The distribution of all four components is not uniform, suggesting that different aspects of the lamina propria are drawn into oscillation depending on vocal fold tension. A differentiated recruitment of tissue into oscillation could extend the frequency range specifically at the upper end of the frequency scale.

摘要

基频是哺乳动物声学通讯的一个重要感知参数。它取决于声带的振动,而声带的振动又取决于振动组织的形态和粘弹性特性。在这项研究中,我测试了猕猴(Macaca mulatta)的声带和室带的应力-应变和应力松弛行为是否可以预测该物种在整个发声范围内的自然基频范围,以及单个叫声类型内的频率轮廓。在拉伸试验中,研究了猕猴声带和室带的载荷-应变和应力松弛行为。使用弦模型,对该物种的基频范围、个体变异性以及“咕咕”叫声的频率轮廓进行了预测。猕猴的低频和中频范围(高达 2 kHz)可以用弦模型相对较好地预测。弦模型预测的最大基频与猕猴记录的最大基频之间的差异目前归因于很难预测固有层在非常高应变下的行为。声带的组织学切片和不同的染色技术确定了固有层的胶原蛋白、弹性蛋白、透明质酸和令人惊讶的脂肪细胞作为其组成部分。所有这四个成分的分布并不均匀,这表明固有层的不同方面根据声带张力被拉入振动。组织在特定的频率范围内有差异地被招募进入振动,这可以扩展频率范围,特别是在频率范围的上限。

相似文献

1
Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds.
J Exp Biol. 2010 Sep;213(Pt 17):2924-32. doi: 10.1242/jeb.044404.
2
Elasticity and stress relaxation of a very small vocal fold.
J Biomech. 2011 Jul 7;44(10):1936-40. doi: 10.1016/j.jbiomech.2011.04.024. Epub 2011 May 8.
3
Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
Logoped Phoniatr Vocol. 2009 Dec;34(4):181-9. doi: 10.3109/14015430902913501.
4
Visualizing collagen network within human and rhesus monkey vocal folds using polarized light microscopy.
Ann Otol Rhinol Laryngol. 2013 Feb;122(2):135-44. doi: 10.1177/000348941312200210.
5
Microstructural and mechanical characterization of scarred vocal folds.
J Biomech. 2015 Feb 26;48(4):708-711. doi: 10.1016/j.jbiomech.2015.01.014. Epub 2015 Jan 21.
8
Modeling of the transient responses of the vocal fold lamina propria.
J Mech Behav Biomed Mater. 2009 Jan;2(1):93-104. doi: 10.1016/j.jmbbm.2008.05.005.
9
Adapted to roar: functional morphology of tiger and lion vocal folds.
PLoS One. 2011;6(11):e27029. doi: 10.1371/journal.pone.0027029. Epub 2011 Nov 2.
10
A rabbit vocal fold laser scarring model for testing lamina propria tissue-engineering therapies.
Laryngoscope. 2014 Oct;124(10):2321-6. doi: 10.1002/lary.24707. Epub 2014 Jun 3.

引用本文的文献

1
Vocal membranes lower the phonation threshold pressure in rhesus macaques ().
R Soc Open Sci. 2025 Jun 25;12(6):250243. doi: 10.1098/rsos.250243. eCollection 2025 Jun.
4
Vocal state change through laryngeal development.
Nat Commun. 2019 Oct 9;10(1):4592. doi: 10.1038/s41467-019-12588-6.
5
In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx.
Sci Rep. 2017 Sep 12;7(1):11296. doi: 10.1038/s41598-017-11258-1.
6
Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.
PLoS Comput Biol. 2016 Jun 16;12(6):e1004907. doi: 10.1371/journal.pcbi.1004907. eCollection 2016 Jun.
7
The Acoustic Structure and Information Content of Female Koala Vocal Signals.
PLoS One. 2015 Oct 14;10(10):e0138670. doi: 10.1371/journal.pone.0138670. eCollection 2015.
8
Nocturnal "humming" vocalizations: adding a piece to the puzzle of giraffe vocal communication.
BMC Res Notes. 2015 Sep 9;8:425. doi: 10.1186/s13104-015-1394-3.
9
Combining multiobjective optimization and cluster analysis to study vocal fold functional morphology.
IEEE Trans Biomed Eng. 2014 Jul;61(7):2199-208. doi: 10.1109/TBME.2014.2319194. Epub 2014 Apr 22.
10
Cues to androgens and quality in male gibbon songs.
PLoS One. 2013 Dec 18;8(12):e82748. doi: 10.1371/journal.pone.0082748. eCollection 2013.

本文引用的文献

2
Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
Logoped Phoniatr Vocol. 2009 Dec;34(4):181-9. doi: 10.3109/14015430902913501.
4
Nonlinear source-filter coupling in phonation: theory.
J Acoust Soc Am. 2008 May;123(5):2733-49. doi: 10.1121/1.2832337.
5
Nonlinear source-filter coupling in phonation: vocal exercises.
J Acoust Soc Am. 2008 Apr;123(4):1902-15. doi: 10.1121/1.2832339.
6
Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
J Voice. 2009 May;23(3):277-82. doi: 10.1016/j.jvoice.2007.09.010. Epub 2008 Jan 11.
7
Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
J Voice. 2008 May;22(3):275-82. doi: 10.1016/j.jvoice.2006.10.007. Epub 2007 May 23.
8
Relative contributions of collagen and elastin to elasticity of the vocal fold under tension.
Ann Biomed Eng. 2007 Aug;35(8):1471-83. doi: 10.1007/s10439-007-9314-x. Epub 2007 Apr 24.
9
Refinements in modeling the passive properties of laryngeal soft tissue.
J Appl Physiol (1985). 2007 Jul;103(1):206-19. doi: 10.1152/japplphysiol.00892.2006. Epub 2007 Apr 5.
10
Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
Ann Otol Rhinol Laryngol. 2007 Feb;116(2):135-44. doi: 10.1177/000348940711600210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验