Department of Biology, University of Southern Denmark, Odense, Denmark.
Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich, Switzerland.
Sci Rep. 2017 Sep 12;7(1):11296. doi: 10.1038/s41598-017-11258-1.
The biomechanics of sound production forms an integral part of the neuromechanical control loop of avian vocal motor control. However, we critically lack quantification of basic biomechanical parameters describing the vocal organ, the syrinx, such as material properties of syringeal elements, forces and torques exerted on, and motion of the syringeal skeleton during song. Here, we present a novel marker-based 3D stereoscopic imaging technique to reconstruct 3D motion of servo-controlled actuation of syringeal muscle insertions sites in vitro and focus on two muscles controlling sound pitch. We furthermore combine kinematic analysis with force measurements to quantify elastic properties of sound producing medial labia (ML). The elastic modulus of the zebra finch ML is 18 kPa at 5% strain, which is comparable to elastic moduli of mammalian vocal folds. Additionally ML lengthening due to musculus syringealis ventralis (VS) shortening is intrinsically constraint at maximally 12% strain. Using these values we predict sound pitch to range from 350-800 Hz by VS modulation, corresponding well to previous observations. The presented methodology allows for quantification of syringeal skeleton motion and forces, acoustic effects of muscle recruitment, and calibration of computational birdsong models, enabling experimental access to the entire neuromechanical control loop of vocal motor control.
声音产生的生物力学是鸟类发声运动控制的神经机械控制回路的一个组成部分。然而,我们严重缺乏描述发声器官(鸣管)的基本生物力学参数的定量信息,例如鸣管元件的材料特性、鸣管骨骼在歌唱过程中受到的力和扭矩以及运动。在这里,我们提出了一种新颖的基于标记的 3D 立体成像技术,用于重建体外控制鸣肌插入部位的 3D 运动,并重点关注控制声音音高的两块肌肉。我们还将运动学分析与力测量相结合,以量化发声的中阴唇(ML)的弹性特性。斑胸草雀 ML 的弹性模量在 5%应变时为 18 kPa,与哺乳动物声带的弹性模量相当。此外,由于腹侧鸣肌(VS)缩短,ML 的伸长在最大 12%应变时受到内在限制。使用这些值,我们预测通过 VS 调制的声音音高范围为 350-800 Hz,与之前的观察结果非常吻合。所提出的方法允许定量分析鸣管骨骼运动和力、肌肉募集的声学效应以及计算鸟类鸣叫模型的校准,从而可以通过实验进入发声运动控制的整个神经机械控制回路。