Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.
J Am Chem Soc. 2010 Sep 8;132(35):12210-1. doi: 10.1021/ja1051632.
Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) enable the survival of organisms living in subfreezing habitats and serve as preservatives. Although their function is known, the underlying molecular mechanism was not understood. Mutagenesis experiments questioned the previous assumption of hydrogen bonding as the dominant mechanism. We use terahertz spectroscopy to show that antifreeze activity is directly correlated with long-range collective hydration dynamics. Our results provide evidence for a new model of how AFGPs prevent water from freezing. We suggest that antifreeze activity may be induced because the AFGP perturbs the aqueous solvent over long distances. Retarded water dynamics in the large hydration shell does not favor freezing. The complexation of the carbohydrate cis-hydroxyl groups by borate suppresses the long-range hydration shell detected by terahertz absorption. The hydration dynamics shift toward bulk water behavior strongly reduces the AFGP antifreeze activity, further supporting our model.
抗冻蛋白(AFPs)和抗冻糖蛋白(AFGPs)使生活在亚冰点环境中的生物得以生存,并起到了保护剂的作用。虽然它们的功能已为人所知,但其中的分子机制尚未被理解。突变实验对先前氢键占主导地位的假设提出了质疑。我们使用太赫兹光谱表明,抗冻活性与长程集体水合动力学直接相关。我们的结果为抗冻糖蛋白如何防止水冻结的新模型提供了证据。我们认为,抗冻活性可能是由于 AFGP 扰乱了长距离的水溶剂而产生的。在大的水合壳中,水动力学的延迟不利于冻结。硼酸与碳水化合物顺式羟基的络合抑制了太赫兹吸收检测到的长程水合壳。水合动力学向体相水行为的转变强烈降低了 AFGP 的抗冻活性,进一步支持了我们的模型。