Suppr超能文献

相似文献

1
High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins.
J Phys Chem Lett. 2021 Sep 16;12(36):8777-8783. doi: 10.1021/acs.jpclett.1c01855. Epub 2021 Sep 7.
2
Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces.
J Phys Chem B. 2019 Aug 1;123(30):6474-6480. doi: 10.1021/acs.jpcb.9b06375. Epub 2019 Jul 19.
3
The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins.
Int J Biol Macromol. 2024 Oct;277(Pt 4):134562. doi: 10.1016/j.ijbiomac.2024.134562. Epub 2024 Aug 6.
4
Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
J Phys Chem B. 2020 Jun 11;124(23):4686-4696. doi: 10.1021/acs.jpcb.0c01206. Epub 2020 Jun 1.
5
Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation.
Langmuir. 2022 Dec 13;38(49):15132-15144. doi: 10.1021/acs.langmuir.2c02149. Epub 2022 Nov 30.
7
8
Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
J Chem Phys. 2019 Apr 7;150(13):131101. doi: 10.1063/1.5090589.
10
The basis for hyperactivity of antifreeze proteins.
Cryobiology. 2006 Oct;53(2):229-39. doi: 10.1016/j.cryobiol.2006.06.006. Epub 2006 Aug 2.

引用本文的文献

1
Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings.
Research (Wash D C). 2023 May 18;6:0140. doi: 10.34133/research.0140. eCollection 2023.
2
Cold adaptation strategies in plants-An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants.
Front Genet. 2022 Aug 25;13:909007. doi: 10.3389/fgene.2022.909007. eCollection 2022.

本文引用的文献

1
Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
J Phys Chem B. 2020 Jun 11;124(23):4686-4696. doi: 10.1021/acs.jpcb.0c01206. Epub 2020 Jun 1.
2
Length-scale dependence of protein hydration-shell density.
Phys Chem Chem Phys. 2020 Apr 14;22(14):7340-7347. doi: 10.1039/c9cp06214a. Epub 2020 Mar 25.
3
Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice.
J Phys Chem B. 2019 Sep 26;123(38):8010-8018. doi: 10.1021/acs.jpcb.9b05664. Epub 2019 Sep 12.
4
Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces.
J Phys Chem B. 2019 Aug 1;123(30):6474-6480. doi: 10.1021/acs.jpcb.9b06375. Epub 2019 Jul 19.
5
6
Combined molecular dynamics and neural network method for predicting protein antifreeze activity.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13252-13257. doi: 10.1073/pnas.1814945115. Epub 2018 Dec 7.
7
Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2018 Oct 11;122(40):9389-9398. doi: 10.1021/acs.jpcb.8b08506. Epub 2018 Sep 27.
8
Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8266-8271. doi: 10.1073/pnas.1806996115. Epub 2018 Jul 9.
9
Solvation Shell Structure of Small Molecules and Proteins by IR-MCR Spectroscopy.
J Phys Chem Lett. 2017 Feb 2;8(3):611-614. doi: 10.1021/acs.jpclett.6b02925. Epub 2017 Jan 20.
10
Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
Biochem J. 2016 Nov 1;473(21):4011-4026. doi: 10.1042/BCJ20160543. Epub 2016 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验