School of Library and Information Science and Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506-0224, USA.
Health Info Libr J. 2010 Sep;27(3):235-43. doi: 10.1111/j.1471-1842.2010.00897.x.
Visual findings summarized in the figures and tables of academic papers are invaluable sources for biomedical researchers. Captions associated with the visual findings are often neglected while retrieving biomedical images in published academic papers.
This study is to assess caption-based topical descriptors for microscopic images of breast neoplasms, as published in academic papers retrieved through the PubMed Central database.
Human indexers as well as an automatic keyword finder called TAPoR generated the topical descriptors from collected captions. The study then compared the human-generated descriptors to machine-generated descriptors. Finally, a set of core descriptors was developed from both sets and automatically mapped into the Unified Medical Language System's (UMLS) Metathesaurus through a MetaMap Transfer engine.
Major topical descriptors included histologic disease names, laboratory procedures, genetic functions and components. Human indexers provided more relevant descriptors than TAPoR. The UMLS Metathesaurus identified several semantic types including Indicator, Reagent, or Diagnostic Aid; Organic Chemical; Laboratory Procedure; Spatial Concept; Qualitative Concept; and Quantitative Concept.
The findings suggest that caption-based descriptors can complement title or abstract-based literature indexing for figure image retrieval in articles. With respect to forming a metadata framework for online microscopic image description, the semantic types can be used as a core metadata set. In this regard, this finding can be used for standardising a microscopic image description protocol to train medical students.
It is incumbent upon libraries and other information agencies to promote and maintain an interest in the opportunities and challenges associated with biomedical imaging.
学术论文中的图表总结的视觉发现是生物医学研究人员非常宝贵的资源。在检索发表的学术论文中的生物医学图像时,往往会忽略与视觉发现相关的标题。
本研究旨在评估基于标题的乳腺肿瘤显微镜图像主题描述符,这些图像来自通过 PubMed Central 数据库检索到的学术论文。
人类索引员和名为 TAPoR 的自动关键词查找器从收集的标题中生成主题描述符。然后,研究比较了人工生成的描述符和机器生成的描述符。最后,从两组描述符中开发了一组核心描述符,并通过 MetaMap 传输引擎自动映射到统一医学语言系统 (UMLS) 的 Metathesaurus 中。
主要的主题描述符包括组织学疾病名称、实验室程序、遗传功能和成分。人类索引员提供的描述符比 TAPoR 更相关。UMLS Metathesaurus 确定了几个语义类型,包括指示符、试剂或诊断辅助剂、有机化学物质、实验室程序、空间概念、定性概念和定量概念。
研究结果表明,基于标题的描述符可以补充基于标题或摘要的文献索引,以检索文章中的图像。关于形成在线显微镜图像描述的元数据框架,这些语义类型可以用作核心元数据集。在这方面,这一发现可用于标准化显微镜图像描述协议,以培训医学生。
图书馆和其他信息机构有责任关注与生物医学成像相关的机会和挑战,并对此保持兴趣。