Suppr超能文献

着丝粒加载到染色体上的机制:构象动力学研究。

Mechanism of cohesin loading onto chromosomes: a conformational dynamics study.

机构信息

Biomolecular Modeling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom.

出版信息

Biophys J. 2010 Aug 9;99(4):1212-20. doi: 10.1016/j.bpj.2010.06.006.

Abstract

The structure-function relationship of cohesin, an essential chromosome maintenance protein, is investigated by analyzing its collective dynamics and conformational flexibility, enhancing our understanding of the sister chromatid cohesion process. A three-dimensional model of cohesin has been constructed by homology modeling using both crystallographic and electron microscopy image data. The harmonic dynamics of the cohesin structure are calculated with a coarse-grained elastic network model. The model shows that the bending motion of the cohesin ring is able to adopt a head-to-tail conformation, in agreement with experimental data. Low-frequency conformational changes are observed to deform the highly conserved glycine residues at the interface of the cohesin heterodimer. Normal mode analysis further reveals that, near large globular structures such as nucleosome and accessory proteins docked to cohesin, the mobility of the coiled-coil regions is notably affected. Moreover, fully solvated molecular dynamics calculations, performed specifically on the hinge region, indicate that hinge opening starts from one side of the dimerization interface, and is coordinated by highly conserved glycine residues.

摘要

通过分析其集体动力学和构象灵活性,研究了黏合蛋白这一必需的染色体维持蛋白的结构-功能关系,从而增强了我们对姐妹染色单体黏合过程的理解。使用晶体学和电子显微镜图像数据的同源建模构建了黏合蛋白的三维模型。使用粗粒弹性网络模型计算了黏合蛋白结构的谐动力学。该模型表明,黏合蛋白环的弯曲运动能够采用头对头的构象,与实验数据一致。观察到低频构象变化会使黏合蛋白异二聚体界面处高度保守的甘氨酸残基变形。模态分析进一步表明,在接近大球状结构(如核小体和黏合蛋白上停靠的辅助蛋白)附近,螺旋区的流动性会受到显著影响。此外,专门在铰链区域上进行的完全溶剂化分子动力学计算表明,铰链的打开始于二聚化界面的一侧,并由高度保守的甘氨酸残基协调。

相似文献

1
Mechanism of cohesin loading onto chromosomes: a conformational dynamics study.
Biophys J. 2010 Aug 9;99(4):1212-20. doi: 10.1016/j.bpj.2010.06.006.
2
A multi-step pathway for the establishment of sister chromatid cohesion.
PLoS Genet. 2007 Jan 19;3(1):e12. doi: 10.1371/journal.pgen.0030012. Epub 2006 Dec 8.
3
Structure of the cohesin loader Scc2.
Nat Commun. 2017 Jan 6;8:13952. doi: 10.1038/ncomms13952.
4
Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge.
Cell. 2006 Nov 3;127(3):523-37. doi: 10.1016/j.cell.2006.08.048.
5
Suppressor screening reveals common kleisin-hinge interaction in condensin and cohesin, but different modes of regulation.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10889-10898. doi: 10.1073/pnas.1902699116. Epub 2019 May 9.
6
The acetyltransferase Eco1 elicits cohesin dimerization during S phase.
J Biol Chem. 2020 May 29;295(22):7554-7565. doi: 10.1074/jbc.RA120.013102. Epub 2020 Apr 20.
7
The cohesin ring concatenates sister DNA molecules.
Nature. 2008 Jul 17;454(7202):297-301. doi: 10.1038/nature07098. Epub 2008 Jul 2.
8
A Brownian ratchet model for DNA loop extrusion by the cohesin complex.
Elife. 2021 Jul 26;10:e67530. doi: 10.7554/eLife.67530.
9
Characterization of the interaction between the cohesin subunits Rad21 and SA1/2.
PLoS One. 2013 Jul 12;8(7):e69458. doi: 10.1371/journal.pone.0069458. Print 2013.
10
The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms.
Cell. 2018 May 31;173(6):1508-1519.e18. doi: 10.1016/j.cell.2018.04.015. Epub 2018 May 10.

引用本文的文献

1
Molecular Basis for Vacuolar Iron Transport by OsVIT2, a Target for Iron Biofortification in Rice.
Proteins. 2025 Oct;93(10):1717-1731. doi: 10.1002/prot.26843. Epub 2025 May 15.
2
Gaussian network model can be enhanced by combining solvent accessibility in proteins.
Sci Rep. 2017 Aug 8;7(1):7486. doi: 10.1038/s41598-017-07677-9.
3
Identification of Hot Spots in Protein Structures Using Gaussian Network Model and Gaussian Naive Bayes.
Biomed Res Int. 2016;2016:4354901. doi: 10.1155/2016/4354901. Epub 2016 Nov 2.
5
Sequence-based Gaussian network model for protein dynamics.
Bioinformatics. 2014 Feb 15;30(4):497-505. doi: 10.1093/bioinformatics/btt716. Epub 2013 Dec 12.
6
Genetic analysis of phage Mu Mor protein amino acids involved in DNA minor groove binding and conformational changes.
J Biol Chem. 2011 Oct 14;286(41):35852-35862. doi: 10.1074/jbc.M111.269860. Epub 2011 Aug 22.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins.
Nucleic Acids Res. 2010 Jun;38(10):3454-65. doi: 10.1093/nar/gkq038. Epub 2010 Feb 5.
5
Cohesin: its roles and mechanisms.
Annu Rev Genet. 2009;43:525-58. doi: 10.1146/annurev-genet-102108-134233.
6
The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB.
J Mol Biol. 2010 Jan 8;395(1):11-9. doi: 10.1016/j.jmb.2009.10.040. Epub 2009 Oct 22.
7
PiSQRD: a web server for decomposing proteins into quasi-rigid dynamical domains.
Bioinformatics. 2009 Oct 15;25(20):2743-4. doi: 10.1093/bioinformatics/btp512. Epub 2009 Aug 20.
8
Focused functional dynamics of supramolecules by use of a mixed-resolution elastic network model.
Biophys J. 2009 Aug 19;97(4):1178-87. doi: 10.1016/j.bpj.2009.06.009.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验