Suppr超能文献

器官型海马脑片培养物与 3D 微电极阵列偶联的癫痫样电生理活性的体外增殖特性。

Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays.

机构信息

Division of Neurophysiology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.

出版信息

Brain Res. 2010 Oct 28;1358:46-53. doi: 10.1016/j.brainres.2010.08.028. Epub 2010 Aug 14.

Abstract

Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating to CA1. Our study specifically addressed the activity-dependent changes of the propagation of traveling electrophysiological waves in organotypic hippocampal slices during epileptiform discharge and in particular our question is: what happens to the epileptic signals during their propagation through the slice? Multichannel data analysis enabled us to quantify an activity-dependent increase in the propagation velocity of spontaneous bursts. Moreover, through the evaluation of the coherence of the signals, it was possible to point out that only the lower-frequency components (<95Hz) of the electrical activity are completely coherent with respect to the activity originating in the CA3, while components at higher frequencies lose the coherence, possibly suggesting that the cellular mechanism mediating propagation of electrophysiological activity becomes ineffective for those firing rates exceeding an upper bound or that some noise of neuronal origin was added to the signal during propagation.

摘要

目前,癫痫样活动传播的动态方面还没有得到太多关注。为了深入了解神经系统中癫痫发作传播的空间特征,我们使用基质三维微电极阵列(MEA)进行体外研究,以研究电生理活性的游走癫痫样波在海马中的起始和传播。药理学去抑制的海马切片自发产生的癫痫样爆发主要起源于 CA3,并传播到 CA1。我们的研究特别关注癫痫样放电过程中游走电生理波传播的活动依赖性变化,具体来说,我们的问题是:癫痫信号在传播过程中会发生什么变化?多通道数据分析使我们能够量化自发爆发传播速度的活动依赖性增加。此外,通过对信号相干性的评估,可以指出只有电活动的低频成分(<95Hz)相对于源自 CA3 的活动完全相干,而高频成分则失去相干性,这可能表明介导电生理活动传播的细胞机制对于那些超过上限的放电率变得无效,或者在传播过程中信号中添加了一些源自神经元的噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验