Janicot M, Fouque F, Desbuquois B
Unite 30 Institut National de la Santé et de la Recherche Médicale, Hôpital des Enfants-Malades, Paris, France.
J Biol Chem. 1991 Jul 15;266(20):12858-65.
Involvement of acidic cell compartments in processing and action of cholera toxin (CT) in rat liver has been examined using subcellular fractionation. Liver cell fractions prepared various times after CT injection display, after a lag phase, a progressive increase in adenylate cyclase activity, detectable earlier in Golgi-endosomal fractions (20 min) than in plasma membrane fractions (30 min), with a maximum (3-fold basal activity) achieved by 60-90 min. Endosomes containing in vivo internalized CT display a time-dependent increase in their ability to bind anti-A-subunit antibodies and to stimulate exogenous adenylate cyclase, which kinetically parallels the generation of A1 peptide, suggesting a translocation of A-subunit (or A1 peptide) across the endosomal membrane. In vivo chloroquine treatment inhibits endocytosis of CT taken up into the liver, lengthens the lag phase for adenylate cyclase activation by CT, and reduces by 3- to 10-fold the apparent affinity of the toxin for the enzyme. Incubation of endosomes containing internalized toxin at 37 degrees C under isotonic conditions results in a pH-dependent increase in generation of A1 peptide, membrane translocation of A-subunit (or A1 peptide), and degradation of toxin, with a maximum at pH 5. Addition of ATP, by decreasing the internal endosomal pH, stimulates both generation of the A1 peptide and degradation of toxin at pH 6-8. It is concluded that activation of adenylate cyclase by CT in intact liver requires association and subsequent processing of toxin in an acidic cell compartment, presumably endosomal.