Suppr超能文献

调控主调控因子:建立骨骼肌中的组织特异性基因表达。

Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle.

机构信息

Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, CA.

出版信息

Epigenetics. 2010 Nov-Dec;5(8):691-5. doi: 10.4161/epi.5.8.13045. Epub 2010 Nov 1.

Abstract

MyoD is a master regulator of the skeletal muscle gene expression program. ChIP-Seq analysis has recently revealed that MyoD binds to a large number of genomic loci in differentiating myoblasts, yet only activates transcription at a subset of these genes. Here we discuss recent data suggesting that the ability of MyoD to mediate gene expression is regulated through the function of Polycomb and Trithorax Group proteins. Based on studies of the muscle-specific myog gene, we propose a model where the transcriptional activators Mef2d and Six4 mediate recruitment of Trithorax Group proteins Ash2L/MLL2 and UTX to MyoD-bound promoters to overcome the Polycomb-mediated repression of muscle genes. Modulation of the interaction between Ash2L/MLL2 and Mef2d by the p38α MAPK signaling pathway in turns provides fine-tuning of the muscle-specific gene expression program. Thus Mef2d, Six4, and p38α MAPK function coordinately as regulators of a master regulator to mediate expression of MyoD target genes.

摘要

MyoD 是骨骼肌基因表达程序的主要调节因子。最近的 ChIP-Seq 分析表明,MyoD 在分化的成肌细胞中结合到大量基因组位置,但仅在这些基因的一部分中激活转录。在这里,我们讨论了最近的数据,这些数据表明 MyoD 介导基因表达的能力是通过 Polycomb 和 Trithorax 组蛋白的功能来调节的。基于对肌肉特异性 myog 基因的研究,我们提出了一个模型,其中转录激活因子 Mef2d 和 Six4 介导 Trithorax 组蛋白 Ash2L/MLL2 和 UTX 招募到 MyoD 结合的启动子上,以克服肌肉基因的 Polycomb 介导的抑制。p38α MAPK 信号通路对 Ash2L/MLL2 和 Mef2d 之间相互作用的调节反过来又为肌肉特异性基因表达程序提供了精细的调节。因此,Mef2d、Six4 和 p38α MAPK 作为一个主要调节因子的调节因子共同作用,介导 MyoD 靶基因的表达。

相似文献

1
Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle.
Epigenetics. 2010 Nov-Dec;5(8):691-5. doi: 10.4161/epi.5.8.13045. Epub 2010 Nov 1.
2
p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program.
Skelet Muscle. 2016 Aug 22;6:28. doi: 10.1186/s13395-016-0100-z. eCollection 2016.
3
The Notch effector Hey1 associates with myogenic target genes to repress myogenesis.
J Biol Chem. 2010 Jan 8;285(2):1249-58. doi: 10.1074/jbc.M109.046441. Epub 2009 Nov 16.
4
Requirement of decreased O-GlcNAc glycosylation of Mef2D for its recruitment to the myogenin promoter.
Biochem Biophys Res Commun. 2013 Apr 19;433(4):558-62. doi: 10.1016/j.bbrc.2013.03.033. Epub 2013 Mar 22.
5
Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis.
FASEB J. 2015 Nov;29(11):4738-55. doi: 10.1096/fj.15-277053. Epub 2015 Jul 30.
6
Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
J Biol Chem. 2005 Feb 11;280(6):4894-905. doi: 10.1074/jbc.M411894200. Epub 2004 Nov 16.
7
A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression.
J Biol Chem. 2012 Mar 9;287(11):8361-70. doi: 10.1074/jbc.M111.286203. Epub 2012 Jan 23.
8
Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation.
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16570-5. doi: 10.1073/pnas.0708253104. Epub 2007 Oct 10.

引用本文的文献

1
Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy.
iScience. 2024 Nov 8;27(12):111350. doi: 10.1016/j.isci.2024.111350. eCollection 2024 Dec 20.
2
The Molecular and Biological Function of MEF2D in Leukemia.
Adv Exp Med Biol. 2024;1459:379-403. doi: 10.1007/978-3-031-62731-6_17.
3
Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction.
JCI Insight. 2023 Dec 8;8(23):e170518. doi: 10.1172/jci.insight.170518.
5
Contribution of muscle satellite cells to sarcopenia.
Front Physiol. 2022 Aug 12;13:892749. doi: 10.3389/fphys.2022.892749. eCollection 2022.
8
Epigenetic regulation of satellite cell fate during skeletal muscle regeneration.
Skelet Muscle. 2021 Jan 11;11(1):4. doi: 10.1186/s13395-020-00259-w.
9
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis.
Int J Mol Sci. 2020 Dec 8;21(24):9340. doi: 10.3390/ijms21249340.
10
Master regulator genes and their impact on major diseases.
PeerJ. 2020 Oct 6;8:e9952. doi: 10.7717/peerj.9952. eCollection 2020.

本文引用的文献

1
Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation.
Nucleic Acids Res. 2010 Nov;38(20):6857-71. doi: 10.1093/nar/gkq585. Epub 2010 Jul 2.
2
Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming.
Dev Cell. 2010 Apr 20;18(4):662-74. doi: 10.1016/j.devcel.2010.02.014.
3
The spatial dynamics of tissue-specific promoters during C. elegans development.
Genes Dev. 2010 Apr 15;24(8):766-82. doi: 10.1101/gad.559610.
4
UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis.
EMBO J. 2010 Apr 21;29(8):1401-11. doi: 10.1038/emboj.2010.37. Epub 2010 Mar 18.
5
Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4230-5. doi: 10.1073/pnas.0913089107. Epub 2010 Feb 16.
6
Modifications of RNA polymerase II are pivotal in regulating gene expression states.
EMBO Rep. 2009 Nov;10(11):1213-9. doi: 10.1038/embor.2009.221. Epub 2009 Oct 16.
7
MyoD targets TAF3/TRF3 to activate myogenin transcription.
Mol Cell. 2008 Oct 10;32(1):96-105. doi: 10.1016/j.molcel.2008.09.009.
8
Stem cell regulation by polycomb repressors: postponing commitment.
Curr Opin Cell Biol. 2008 Apr;20(2):201-7. doi: 10.1016/j.ceb.2008.01.004. Epub 2008 Mar 4.
9
MicroChIP--a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies.
Nucleic Acids Res. 2008 Feb;36(3):e15. doi: 10.1093/nar/gkm1158. Epub 2008 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验