Suppr超能文献

定量和减少西门子 Primus 加速器电子治疗模式下漏射线的周围剂量。

Quantification and reduction of peripheral dose from leakage radiation on Siemens Primus accelerators in electron therapy mode.

机构信息

Department of Medical Physics, Odette Cancer Centre, Toronto, Ontario, Canada.

出版信息

J Appl Clin Med Phys. 2010 Jun 15;11(3):3105. doi: 10.1120/jacmp.v11i3.3105.

Abstract

In this work, leakage radiation from EA200 series electron applicators on Siemens Primus accelerators is quantified, and its penetration ability in water and/or the shielding material Xenolite-NL established. Initially, measurement of leakage from 10 x 10 - 25 x 25 cm2 applicators was performed as a function of height along applicator and of lateral distance from applicator body. Relative to central-axis ionization maximum in solid water, the maximum leakage in air observed with a cylindrical ion chamber with 1 cm solid water buildup cap at a lateral distance of 2 cm from the front and right sidewalls of applicators were 17% and 14%, respectively; these maxima were recorded for 18 MeV electron beams and applicator sizes of >or=20 x 20 cm2. In the patient plane, the applicator leakage gave rise to a broad peripheral dose off-axis distance peak that shifted closer to the field edge as the electron energy increases. The maximum peripheral dose from normally incident primary electron beams at a depth of 1 cm in a water phantom was observed to be equal to 5% of the central-axis dose maximum and as high as 9% for obliquely incident beams with angles of obliquity <or=40 degrees . Measured depth-peripheral dose curves showed that the "practical range" of the leakage electrons in water varies from approximately 1.4 to 5.7 cm as the primary electron beam energy is raised from 6 to 18 MeV. Next, transmission measurements of leakage radiation through the shielding material Xenolite-NL showed a 4 mm thick sheet of this material is required to attenuate the leakage from 9 MeV beams by two-thirds, and that for every additional 3 MeV increase in the primary electron beam energy, an additional Xenolite-NL thickness of roughly 2 mm is needed to achieve the aforementioned attenuation level. Finally, attachment of a 1 mm thick sheet of lead to the outer surface of applicator sidewalls resulted in a reduction of the peripheral dose by up to 80% and 74% for 9 and 18MeV beams, respectively. This sidewall modification had an insignificant effect on the clinical depth dose, cross-axis beam profiles, and output factors.

摘要

在这项工作中,定量评估了西门子 Primus 加速器上的 EA200 系列电子施源器的漏射线,并确定了其在水中和/或屏蔽材料 Xenolite-NL 中的穿透能力。首先,测量了 10×10-25×25cm2 施源器沿施源器高度和离施源器体横向距离的漏射线。在离前侧壁和右侧壁 2cm 处,用一个带有 1cm 固体水帽的圆柱形离子室测量,与固体水中心轴离子最大相比,在 18MeV 电子束和施源器尺寸大于等于 20×20cm2 时,观察到的最大空气漏射线分别为 17%和 14%;这些最大值是在 18MeV 电子束下记录的。在患者平面,施源器漏射线引起离轴距离宽的周围剂量峰值,随着电子能量增加,该峰值向射野边缘移动。在水模体中深度为 1cm 处,垂直入射初级电子束的最大周围剂量与中心轴剂量最大值的 5%相等,而斜入射角度小于等于 40 度的束最大周围剂量高达 9%。测量的深度-周围剂量曲线表明,随着电子束能量从 6MeV 提高到 18MeV,漏射线电子在水中的“实际射程”从大约 1.4cm 变化到 5.7cm。接下来,通过 Xenolite-NL 屏蔽材料的透射测量表明,需要 4mm 厚的这种材料才能将 9MeV 束的漏射线衰减三分之二,并且对于初级电子束能量每增加 3MeV,就需要大约 2mm 厚的 Xenolite-NL 来达到上述衰减水平。最后,在施源器侧壁外表面附加 1mm 厚的铅片,可使 9MeV 和 18MeV 束的周围剂量分别降低 80%和 74%。这种侧壁修改对临床深度剂量、交叉轴束轮廓和输出因子没有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9fd/5720440/8d48d69c677c/ACM2-11-154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验