Peter Adrian, Rangarajan Anand, Ho Jeffrey
Dept. of ECE, University of Florida, Gainesville, FL.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008(4587838):4587838. doi: 10.1109/CVPR.2008.4587838.
Shape representation and retrieval of stored shape models are becoming increasingly more prominent in fields such as medical imaging, molecular biology and remote sensing. We present a novel framework that directly addresses the necessity for a rich and compressible shape representation, while simultaneously providing an accurate method to index stored shapes. The core idea is to represent point-set shapes as the square root of probability densities expanded in a wavelet basis. We then use this representation to develop a natural similarity metric that respects the geometry of these probability distributions, i.e. under the wavelet expansion, densities are points on a unit hypersphere and the distance between densities is given by the separating arc length. The process uses a linear assignment solver for non-rigid alignment between densities prior to matching; this has the connotation of "sliding" wavelet coefficients akin to the sliding block puzzle L'Âne Rouge. We illustrate the utility of this framework by matching shapes from the MPEG-7 data set and provide comparisons to other similarity measures, such as Euclidean distance shape distributions.
在医学成像、分子生物学和遥感等领域,存储形状模型的形状表示和检索正变得越来越重要。我们提出了一个新颖的框架,该框架直接解决了对丰富且可压缩的形状表示的需求,同时提供了一种精确的方法来索引存储的形状。核心思想是将点集形状表示为在小波基中展开的概率密度的平方根。然后,我们使用这种表示来开发一种自然的相似性度量,该度量尊重这些概率分布的几何结构,即在小波展开下,密度是单位超球面上的点,密度之间的距离由分离弧长给出。该过程在匹配之前使用线性分配求解器对密度之间进行非刚性对齐;这具有类似于滑块拼图《红鬃马》那样“滑动”小波系数的含义。我们通过匹配来自MPEG - 7数据集的形状来说明该框架的实用性,并与其他相似性度量(如欧几里得距离形状分布)进行比较。