Suppr超能文献

总布雷格曼散度及其在形状检索中的应用。

Total Bregman Divergence and its Applications to Shape Retrieval.

作者信息

Liu Meizhu, Vemuri Baba C, Amari Shun-Ichi, Nielsen Frank

机构信息

CISE, University of Florida mliu,

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010:3463-3468. doi: 10.1109/CVPR.2010.5539979.

Abstract

Shape database search is ubiquitous in the world of biometric systems, CAD systems etc. Shape data in these domains is experiencing an explosive growth and usually requires search of whole shape databases to retrieve the best matches with accuracy and efficiency for a variety of tasks. In this paper, we present a novel divergence measure between any two given points in [Formula: see text] or two distribution functions. This divergence measures the orthogonal distance between the tangent to the convex function (used in the definition of the divergence) at one of its input arguments and its second argument. This is in contrast to the ordinate distance taken in the usual definition of the Bregman class of divergences [4]. We use this orthogonal distance to redefine the Bregman class of divergences and develop a new theory for estimating the center of a set of vectors as well as probability distribution functions. The new class of divergences are dubbed the total Bregman divergence (TBD). We present the l-norm based TBD center that is dubbed the t-center which is then used as a cluster center of a class of shapes The t-center is weighted mean and this weight is small for noise and outliers. We present a shape retrieval scheme using TBD and the t-center for representing the classes of shapes from the MPEG-7 database and compare the results with other state-of-the-art methods in literature.

摘要

形状数据库搜索在生物识别系统、计算机辅助设计(CAD)系统等领域中无处不在。这些领域中的形状数据正呈爆炸式增长,通常需要搜索整个形状数据库,以便针对各种任务准确、高效地检索出最佳匹配项。在本文中,我们提出了一种在[公式:见原文]中任意两个给定的点之间或两个分布函数之间的新型散度度量。这种散度度量的是凸函数(用于散度定义)在其一个输入参数处的切线与其第二个参数之间的正交距离。这与布雷格曼散度类通常定义中采用的纵坐标距离形成对比[4]。我们使用这种正交距离重新定义布雷格曼散度类,并开发了一种用于估计一组向量以及概率分布函数中心的新理论。这种新的散度类被称为全布雷格曼散度(TBD)。我们提出了基于l - 范数的TBD中心,即所谓的t - 中心,它随后被用作一类形状的聚类中心。t - 中心是加权均值,对于噪声和离群值,该权重较小。我们提出了一种使用TBD和t - 中心的形状检索方案,用于表示来自MPEG - 7数据库的形状类别,并将结果与文献中其他最先进的方法进行比较。

相似文献

1
Total Bregman Divergence and its Applications to Shape Retrieval.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010:3463-3468. doi: 10.1109/CVPR.2010.5539979.
2
Shape retrieval using hierarchical total Bregman soft clustering.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19. doi: 10.1109/TPAMI.2012.44.
3
Total Bregman divergence and its applications to DTI analysis.
IEEE Trans Med Imaging. 2011 Feb;30(2):475-83. doi: 10.1109/TMI.2010.2086464. Epub 2010 Oct 14.
4
A Note on Divergences.
Neural Comput. 2016 Oct;28(10):2045-62. doi: 10.1162/NECO_a_00878. Epub 2016 Aug 24.
7
Cost-sensitive sequences of Bregman divergences.
IEEE Trans Neural Netw Learn Syst. 2012 Dec;23(12):1896-904. doi: 10.1109/TNNLS.2012.2219067.
8
On a Generalization of the Jensen-Shannon Divergence and the Jensen-Shannon Centroid.
Entropy (Basel). 2020 Feb 16;22(2):221. doi: 10.3390/e22020221.
9
Revisiting Chernoff Information with Likelihood Ratio Exponential Families.
Entropy (Basel). 2022 Oct 1;24(10):1400. doi: 10.3390/e24101400.
10
On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds.
Entropy (Basel). 2020 Jun 28;22(7):713. doi: 10.3390/e22070713.

引用本文的文献

1
Centroid-Based Clustering with -Divergences.
Entropy (Basel). 2019 Feb 19;21(2):196. doi: 10.3390/e21020196.
3
Information Geometry for Radar Target Detection with Total Jensen-Bregman Divergence.
Entropy (Basel). 2018 Apr 6;20(4):256. doi: 10.3390/e20040256.
4
Robust and Efficient Regularized Boosting Using Total Bregman Divergence.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2011 Dec 31;2011. doi: 10.1109/CVPR.2011.5995686.
5
A robust variational approach for simultaneous smoothing and estimation of DTI.
Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17.
6
Shape retrieval using hierarchical total Bregman soft clustering.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19. doi: 10.1109/TPAMI.2012.44.

本文引用的文献

1
Shape L'Âne Rouge: Sliding Wavelets for Indexing and Retrieval.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008(4587838):4587838. doi: 10.1109/CVPR.2008.4587838.
2
A Robust Algorithm for Point Set Registration Using Mixture of Gaussians.
Proc IEEE Int Conf Comput Vis. 2005 Oct;2:1246-1251. doi: 10.1109/ICCV.2005.17.
3
An efficient Earth Mover's Distance algorithm for robust histogram comparison.
IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):840-53. doi: 10.1109/TPAMI.2007.1058.
4
Divergence function, duality, and convex analysis.
Neural Comput. 2004 Jan;16(1):159-95. doi: 10.1162/08997660460734047.
5
k-tree method for high-speed spatial normalization.
Hum Brain Mapp. 1998;6(5-6):358-63. doi: 10.1002/(SICI)1097-0193(1998)6:5/6<358::AID-HBM5>3.0.CO;2-L.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验