Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.
Biochemistry. 2010 Sep 21;49(37):8006-19. doi: 10.1021/bi100508u.
Backbone amide dynamics studies were conducted on a temperature-sensitive mutant (L75F-TrpR) of the tryptophan repressor protein (TrpR) of Escherichia coli in its apo (i.e., no l-tryptophan corepressor-bound) form. The (15)N NMR relaxation profiles of apo-L75F-TrpR were analyzed and compared to those of wild-type (WT) and super-repressor mutant (A77V) TrpR proteins, also in their apo forms. The (15)N NMR relaxation data ((15)N-T(1), (15)N-T(2), and heteronuclear (15)N-{(1)H}-nOe) recorded on all three aporepressors at a magnetic field strength of 600 MHz ((1)H Larmor frequency) were analyzed to extract dynamics parameters, including diffusion tensor ratios (D(∥)/D(⊥)), correlation times (τ(m)) for overall reorientations of the proteins in solution, reduced spectral density terms [J(eff)(0), J(0.87ω(H)), J(ω(N))], and generalized order parameters (S(2)), which report on protein internal motions on the picosecond to nanosecond and slower microsecond to millisecond chemical exchange time scales. Our results indicate that all three aporepressors exhibit comparable D(∥)/D(⊥) ratios and characteristic time constants, τ(m), for overall global reorientation, indicating that in solution, all three apoproteins display very similar overall shape, structure, and rotational diffusion properties. Comparison of (15)N NMR relaxation data, reduced spectral density profiles, and generalized S(2) order parameters indicated that these parameters are quite uniform for backbone amides positioned within the four (A-C and F) core α-helices of all three aporepressors. In contrast, small but noticeable differences in internal dynamics were observed for backbone amides located within the helix D-turn-helix E DNA-binding domain of the apo-TrpR proteins. The significance of these dynamics differences in terms of the biophysical characteristics and ligand binding properties of the three apo-TrpR proteins is discussed.
对大肠杆菌色氨酸阻遏蛋白(TrpR)的温度敏感突变体(L75F-TrpR)进行了骨架酰胺动力学研究,该蛋白处于无辅基(即无 l-色氨酸核心抑制剂结合)形式。分析了无辅基-L75F-TrpR 的 (15)N NMR 弛豫谱,并将其与野生型 (WT) 和超阻遏突变体 (A77V) TrpR 蛋白的弛豫谱进行了比较,这些蛋白也处于无辅基形式。在磁场强度为 600 MHz((1)H Larmor 频率)下,对所有三种无辅基阻遏蛋白记录的 (15)N NMR 弛豫数据((15)N-T1、(15)N-T2 和异核 (15)N-{(1)H}-nOe)进行了分析,以提取动力学参数,包括扩散张量比 (D∥/D⊥)、蛋白质在溶液中整体重取向的相关时间 (τ(m))、还原的光谱密度项 [J(eff)(0)、J(0.87ω(H))、J(ω(N))] 和广义有序参数 (S2),这些参数报告了皮秒到纳秒和较慢的微秒到毫秒化学交换时间尺度上的蛋白质内部运动。我们的结果表明,所有三种无辅基阻遏蛋白都表现出相似的 D∥/D⊥ 比和整体全局重取向的特征时间常数 τ(m),这表明在溶液中,所有三种无辅基蛋白都显示出非常相似的整体形状、结构和旋转扩散性质。比较 (15)N NMR 弛豫数据、还原的光谱密度谱和广义 S2 有序参数表明,这些参数在所有三种无辅基阻遏蛋白的四个(A-C 和 F)核心 α-螺旋内的骨架酰胺位置非常均匀。相比之下,在无辅基 TrpR 蛋白的螺旋 D-转角-螺旋 E DNA 结合域内的骨架酰胺中观察到较小但可察觉的内部动力学差异。讨论了这些动力学差异在三种无辅基 TrpR 蛋白的生物物理特性和配体结合特性方面的意义。