Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
Biochemistry. 2011 Jun 14;50(23):5140-53. doi: 10.1021/bi200389k. Epub 2011 May 20.
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.
大肠杆菌色氨酸阻遏蛋白(WT-TrpR)及其两种功能不同的变体(L75F-TrpR 和 A77V-TrpR)的骨架酰胺动力学特性已通过(15)N 核磁共振(NMR)弛豫来进行研究。这三种蛋白质具有非常相似的结构,排除了它们功能差异的主要构象差异,并表明蛋白质柔韧性的变化是它们独特功能特性的起源。比较特定位置的(15)N-T1、(15)N-T2、(15)N-{(1)H} 核 Overhauser 效应、减少的谱密度和广义顺序(S(2)) 参数表明,三种全抑制物中的骨架动力学总体上非常相似,只有少数位于蛋白质 DNA 结合域内的骨架原子存在明显和显著的例外。我们发现核心 α-螺旋(即螺旋 A-C 和 F)中的酰胺的柔韧性受到高度限制,并且在 DNA 识别螺旋(螺旋 E)中的残基中观察到类似的“僵硬”,DNA 结合域的螺旋 D-转角-螺旋 E(HTH)。出乎意料的是,位于螺旋 D 和相邻转弯区域的酰胺仍然保持柔韧性。这些数据支持这样的概念,即阻遏蛋白的残余柔韧性对于阻遏蛋白功能、DNA 结合以及靶标操纵子的分子识别至关重要。全抑制物的(15)N NMR 弛豫参数与无蛋白的(15)N NMR 弛豫参数的比较表明,单点氨基酸取代 L75F 和 A77V 以非常不同的方式干扰 TrpR 骨架酰胺的柔韧性,并且在三种阻遏物的无蛋白形式中最为明显。最后,我们将这些发现置于其他 DNA 结合蛋白的背景下,并讨论了蛋白质柔韧性在分子识别中的作用。