Kimura Akatsuki, Onami Shuichi
Cell Architecture Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan.
Methods Cell Biol. 2010;97:437-53. doi: 10.1016/S0091-679X(10)97023-4.
Microtubules and associated motor proteins are the major generators and mediators of the forces that organize the functional positioning of intracellular structures. The positioning of the centrosomes is a primary target for microtubule-mediated organization. The positioning of the centrosomes further defines the positionings of nucleus, mitotic spindles, and other organelles. Numerical modeling is an effective means by which we can further understand the physical mechanisms underlying microtubule-mediated centrosome positioning. Here, we summarize how we formulated the biophysical properties of microtubules in order to construct a numerical model of centrosome positioning in Caenorhabditis elegans embryos. Microtubules elongate and shrink in a stochastic manner, in a process known as "dynamic instability." Upon association with the cell cortex or motor proteins, microtubules mediate pushing and pulling forces. These forces move the centrosome, which is located at the minus-end of the microtubules, to the right place with the right timing. We discuss how the modeling efforts complement experimental knowledge and allow us to evaluate the sufficiency of various candidate hypotheses.
微管及相关的马达蛋白是组织细胞内结构功能定位的力的主要产生者和介导者。中心体的定位是微管介导组织的主要目标。中心体的定位进一步确定了细胞核、有丝分裂纺锤体和其他细胞器的位置。数值建模是一种有效的手段,通过它我们可以进一步了解微管介导的中心体定位的物理机制。在这里,我们总结了我们如何构建微管的生物物理特性,以便构建秀丽隐杆线虫胚胎中中心体定位的数值模型。微管以一种随机的方式伸长和收缩,这个过程被称为“动态不稳定性”。与细胞皮层或马达蛋白结合后,微管介导推和拉力。这些力将位于微管负端的中心体在正确的时间移动到正确的位置。我们讨论了建模工作如何补充实验知识,并使我们能够评估各种候选假设的充分性。