Suppr超能文献

解析视皮层的发育:对可塑性和修复的启示。

Unravelling the development of the visual cortex: implications for plasticity and repair.

机构信息

Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.

出版信息

J Anat. 2010 Oct;217(4):449-68. doi: 10.1111/j.1469-7580.2010.01275.x. Epub 2010 Aug 17.

Abstract

The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.

摘要

人类的视觉皮层包含 50 多个区域,每个区域都有特定的作用和独特的生理学、连接和细胞形态。这些单个区域如何在发育过程中出现仍然是一个谜,尽管人们对视觉皮层的初始发育阶段,特别是其分层结构,给予了很多关注,但对于负责大脑这一区域的区域化和功能组织的机制却知之甚少。近年来,我们开始发现,正是内在(分子)和外在(传入连接)线索的相互作用,导致了各个区域的成熟,并且初级视觉皮层(纹状皮层,V1)和多个外纹状体/联合区域的成熟存在时空顺序。在人类和非人类灵长类动物中的研究已经开始强调负责视觉皮层成熟的特定神经基础,以及经验依赖性可塑性和对视觉系统的干扰如何影响其正常发育。此外,由于中风、神经创伤、疾病或缺氧,特定的视觉皮层核(如初级视觉皮层(V1))的损伤在新生儿和成年人中都很常见。然而,局灶性损伤的后果在未成熟和成年大脑之间存在差异,未成熟大脑表现出更高水平的功能弹性。随着检查特定分子和连接变化的技术的改进,我们现在开始揭示导致在生命早期受伤后显著恢复的增加的神经可塑性的机制。对出生后发育/成熟和可塑性的进一步了解,以及在生命早期观察到的可塑性,可以提供新的策略,通过在成年大脑中重现发育计划的某些方面来提高结果。

相似文献

1
Unravelling the development of the visual cortex: implications for plasticity and repair.
J Anat. 2010 Oct;217(4):449-68. doi: 10.1111/j.1469-7580.2010.01275.x. Epub 2010 Aug 17.
3
Cross-modal plasticity after monocular enucleation of the adult rabbit.
Exp Brain Res. 2002 Jun;144(4):423-9. doi: 10.1007/s00221-002-1087-8. Epub 2002 Apr 17.
4
Development and plasticity of the primary visual cortex.
Neuron. 2012 Jul 26;75(2):230-49. doi: 10.1016/j.neuron.2012.06.009.
5
Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.
Neuron. 2020 Apr 8;106(1):21-36. doi: 10.1016/j.neuron.2020.01.031.
6
Role of afferent activity in the development of cortical specification.
Results Probl Cell Differ. 2002;39:139-56. doi: 10.1007/978-3-540-46006-0_7.
7
In vitro approach to visual cortical development and plasticity.
Neurosci Res. 1991 Oct;12(1):57-71. doi: 10.1016/0168-0102(91)90100-d.
8
Human brain plasticity: evidence from sensory deprivation and altered language experience.
Prog Brain Res. 2002;138:177-88. doi: 10.1016/S0079-6123(02)38078-6.
10
Topographic organization of human visual areas in the absence of input from primary cortex.
J Neurosci. 1999 Apr 1;19(7):2619-27. doi: 10.1523/JNEUROSCI.19-07-02619.1999.

引用本文的文献

2
Functional resilience of the neural visual recognition system post-pediatric occipitotemporal resection.
iScience. 2024 Nov 22;27(12):111440. doi: 10.1016/j.isci.2024.111440. eCollection 2024 Dec 20.
4
Functional Resilience of the Neural Visual Recognition System Post-Pediatric Occipitotemporal Resection.
bioRxiv. 2024 May 8:2024.05.08.592792. doi: 10.1101/2024.05.08.592792.
5
Holistic processing and face expertise after pediatric resection of occipitotemporal cortex.
Neuropsychologia. 2024 Feb 15;194:108789. doi: 10.1016/j.neuropsychologia.2024.108789. Epub 2024 Jan 6.
6
Differential functional reorganization of ventral and dorsal visual pathways following childhood hemispherectomy.
Dev Cogn Neurosci. 2023 Dec;64:101323. doi: 10.1016/j.dcn.2023.101323. Epub 2023 Nov 10.
8
Thalamocortical circuits for the formation of hierarchical pathways in the mammalian visual cortex.
Front Neural Circuits. 2023 Apr 17;17:1155195. doi: 10.3389/fncir.2023.1155195. eCollection 2023.
10
Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques.
Nat Commun. 2020 May 21;11(1):2534. doi: 10.1038/s41467-020-16320-7.

本文引用的文献

1
Investigating gradients of gene expression involved in early human cortical development.
J Anat. 2010 Oct;217(4):300-11. doi: 10.1111/j.1469-7580.2010.01259.x.
3
The development of the subplate and thalamocortical connections in the human foetal brain.
Acta Paediatr. 2010 Aug;99(8):1119-27. doi: 10.1111/j.1651-2227.2010.01811.x. Epub 2010 Mar 29.
4
Differential development of the ventral visual cortex extends through adolescence.
Front Hum Neurosci. 2010 Feb 22;3:80. doi: 10.3389/neuro.09.080.2009. eCollection 2010.
5
Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei.
Front Neuroanat. 2010 Feb 12;4:8. doi: 10.3389/neuro.05.008.2010. eCollection 2010.
6
Reorganization of global form and motion processing during human visual development.
Curr Biol. 2010 Mar 9;20(5):411-5. doi: 10.1016/j.cub.2009.12.020. Epub 2010 Feb 18.
7
Neurogenic radial glia in the outer subventricular zone of human neocortex.
Nature. 2010 Mar 25;464(7288):554-561. doi: 10.1038/nature08845.
8
A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey.
Neuron. 2010 Jan 28;65(2):270-9. doi: 10.1016/j.neuron.2010.01.003.
9
Normal development of brain circuits.
Neuropsychopharmacology. 2010 Jan;35(1):147-68. doi: 10.1038/npp.2009.115.
10
Bilateral visual field maps in a patient with only one hemisphere.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13034-9. doi: 10.1073/pnas.0809688106. Epub 2009 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验