Suppr超能文献

老鼠视觉系统中经验依赖性可塑性的基础电路。

Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.

机构信息

Department of Neurobiology, University of Pittsburgh School of Medicine, W1458 BSTWR, 203 Lothrop Street, Pittsburgh, PA 15213, USA.

Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Neuron. 2020 Apr 8;106(1):21-36. doi: 10.1016/j.neuron.2020.01.031.

Abstract

Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.

摘要

自眼优势可塑性被发现以来,神经科学家已经了解到,在特定的发育时期(关键期),视觉经验的变化会引发视觉皮层的强烈变化。用于探测具有细胞类型特异性分辨率的连接的最先进工具扩展了对经验依赖性可塑性基础下的回路变化的理解。在这里,我们回顾了小鼠的视觉回路,描述了从视网膜到丘脑、丘脑到皮层以及皮层内的投射。我们讨论了视觉回路的发育如何导致精确的连接,并确定了可以通过活动或经验改变的突触位置。可塑性扩展到眼优势以外的视觉特征,涉及皮质下和皮质区域,以及皮质抑制性中间神经元之间的连接。经验依赖性可塑性有助于跨越视网膜到丘脑到皮层的网络对齐。这种可塑性的破坏可能是一些神经发育障碍中异常感觉处理的基础。

相似文献

1
Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.
Neuron. 2020 Apr 8;106(1):21-36. doi: 10.1016/j.neuron.2020.01.031.
2
Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus.
Nat Neurosci. 2017 Dec;20(12):1715-1721. doi: 10.1038/s41593-017-0002-3. Epub 2017 Oct 16.
3
Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
Nat Neurosci. 2017 Dec;20(12):1708-1714. doi: 10.1038/s41593-017-0021-0. Epub 2017 Nov 13.
4
Lifelong learning: ocular dominance plasticity in mouse visual cortex.
Curr Opin Neurobiol. 2006 Aug;16(4):451-9. doi: 10.1016/j.conb.2006.06.007. Epub 2006 Jul 11.
5
Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
J Neurosci. 2014 Feb 19;34(8):2940-55. doi: 10.1523/JNEUROSCI.2640-13.2014.
6
Thalamic regulation of ocular dominance plasticity in adult visual cortex.
Elife. 2023 Oct 5;12:RP88124. doi: 10.7554/eLife.88124.
7
Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse.
J Neurosci. 2008 Apr 30;28(18):4807-17. doi: 10.1523/JNEUROSCI.4667-07.2008.
9
Ten-m2 is required for the generation of binocular visual circuits.
J Neurosci. 2013 Jul 24;33(30):12490-509. doi: 10.1523/JNEUROSCI.4708-12.2013.
10
Critical periods in the visual system: changing views for a model of experience-dependent plasticity.
Neuron. 2007 Oct 25;56(2):312-26. doi: 10.1016/j.neuron.2007.10.003.

引用本文的文献

2
Reciprocal interaction between cortical SST and PV interneurons in top-down regulation of retinothalamic refinement.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2504224122. doi: 10.1073/pnas.2504224122. Epub 2025 Jun 18.
3
Experience-dependent plasticity of multiple receptive field properties in lateral geniculate binocular neurons during the critical period.
Front Cell Neurosci. 2025 Apr 28;19:1574505. doi: 10.3389/fncel.2025.1574505. eCollection 2025.
4
Regulation of PV interneuron plasticity by neuropeptide-encoding genes.
Nature. 2025 Apr 30. doi: 10.1038/s41586-025-08933-z.
5
Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis.
Cell Rep. 2025 Apr 22;44(4):115439. doi: 10.1016/j.celrep.2025.115439. Epub 2025 Apr 9.
6
Experience influences the refinement of feature selectivity in the mouse primary visual thalamus.
Neuron. 2025 May 7;113(9):1352-1362.e4. doi: 10.1016/j.neuron.2025.02.023. Epub 2025 Mar 19.
8
Adaptive changes in the visual cortex after photoreceptor degeneration in retinitis pigmentosa.
Histol Histopathol. 2025 Aug;40(8):1163-1172. doi: 10.14670/HH-18-891. Epub 2025 Feb 21.
10
Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex.
bioRxiv. 2025 Jan 28:2025.01.28.635373. doi: 10.1101/2025.01.28.635373.

本文引用的文献

1
Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas.
Nat Commun. 2019 Sep 13;10(1):4174. doi: 10.1038/s41467-019-12058-z.
2
Recruitment of GABAergic Interneurons in the Barrel Cortex during Active Tactile Behavior.
Neuron. 2019 Oct 23;104(2):412-427.e4. doi: 10.1016/j.neuron.2019.07.027. Epub 2019 Aug 26.
3
Transplanted Cells Are Essential for the Induction But Not the Expression of Cortical Plasticity.
J Neurosci. 2019 Sep 18;39(38):7529-7538. doi: 10.1523/JNEUROSCI.1430-19.2019. Epub 2019 Aug 7.
4
Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23298-23303. doi: 10.1073/pnas.1820847116. Epub 2019 Jul 22.
5
Classification of electrophysiological and morphological neuron types in the mouse visual cortex.
Nat Neurosci. 2019 Jul;22(7):1182-1195. doi: 10.1038/s41593-019-0417-0. Epub 2019 Jun 17.
7
Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice.
Neuron. 2019 Apr 17;102(2):477-492.e5. doi: 10.1016/j.neuron.2019.02.010. Epub 2019 Mar 5.
8
Neuromodulatory control of localized dendritic spiking in critical period cortex.
Nature. 2019 Mar;567(7746):100-104. doi: 10.1038/s41586-019-0963-3. Epub 2019 Feb 20.
9
Increased Excitation-Inhibition Ratio Stabilizes Synapse and Circuit Excitability in Four Autism Mouse Models.
Neuron. 2019 Feb 20;101(4):648-661.e4. doi: 10.1016/j.neuron.2018.12.026. Epub 2019 Jan 21.
10
Dendritic Spines in Early Postnatal Fragile X Mice Are Insensitive to Novel Sensory Experience.
J Neurosci. 2019 Jan 16;39(3):412-419. doi: 10.1523/JNEUROSCI.1734-18.2018. Epub 2018 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验