Veridex LLC, Raritan, New Jersey, USA.
J Urol. 2010 Oct;184(4):1521-8. doi: 10.1016/j.juro.2010.05.084. Epub 2010 Aug 17.
Accurate estimates of recurrence risk are needed for optimal treatment of patients with clinically localized prostate cancer. We combined an established nomogram and what to our knowledge are novel molecular predictors into a new prognostic model of prostate specific antigen recurrence.
We analyzed gene expression profiles from formalin fixed, paraffin embedded, localized prostate cancer tissues to identify genes associated with prostate specific antigen recurrence. Profiles of the identified markers were reproduced by reverse transcriptase-polymerase chain reaction. We used the profiles of 3 of these genes along with output from the Kattan postoperative nomogram to produce a predictive model of prostate specific antigen recurrence.
After variable selection we built a model of prostate specific antigen recurrence combining expression values of 3 genes and the postoperative nomogram. The 3-gene plus nomogram model predicted 5-year prostate specific antigen recurrence with a concordance index of 0.77 in a validation set compared to a concordance index of 0.67 for the nomogram. This model identified a subgroup of patients at high risk for recurrence that was not identified by the nomogram.
This new gene based classifier has superior predictive power compared to that of the 5-year nomogram to assess the risk of prostate specific antigen recurrence in patients with organ confined prostate cancer. Our classifier should provide more accurate stratification of patients into high and low risk groups for treatment decisions and adjuvant clinical trials.
为了对局限性前列腺癌患者进行最佳治疗,需要准确估计其复发风险。我们将一个成熟的列线图和据我们所知的新型分子预测因子相结合,建立了一种新的前列腺特异性抗原(PSA)复发预后模型。
我们分析了福尔马林固定、石蜡包埋的局限性前列腺癌组织的基因表达谱,以确定与 PSA 复发相关的基因。通过逆转录聚合酶链反应(RT-PCR)重现了这些标志物的表达谱。我们使用其中 3 个标志物的表达谱以及 Kattan 术后列线图的输出,生成了 PSA 复发的预测模型。
经过变量选择,我们构建了一个结合 3 个基因和术后列线图的 PSA 复发模型。与列线图的 0.67 相比,在验证集上,该 3 基因加列线图模型预测 5 年 PSA 复发的一致性指数为 0.77。该模型确定了一个列线图无法识别的高复发风险亚组。
与 5 年列线图相比,这个新的基于基因的分类器在评估局限性前列腺癌患者 PSA 复发风险方面具有更高的预测能力。我们的分类器应该为治疗决策和辅助临床试验更准确地将患者分层为高风险和低风险组。