Bauer J J, Connelly R R, Seterhenn I A, Deausen J, Srivastava S, McLeod D G, Moul J W
Department of Surgery, Walter Reed Army Medical Center, Washington, D.C., USA.
J Urol. 1998 Mar;159(3):929-33.
Biostatistical models predicting the risk of recurrence after radical prostatectomy for clinically localized prostate cancer are necessary. Identifying these high risk patients shortly after surgery, while tumor burden is minimal, makes them candidates for possible adjuvant therapy and/or investigational phase II clinical trials. This study builds on previously proposed models that predict the likelihood of early recurrence after radical prostatectomy.
In our analysis we evaluate age, race, prostatic acid phosphatase and nuclear grade with the established prognostic variables of pretreatment prostate specific antigen, postoperative Gleason sum and pathological stage.
After multivariable Cox regression analysis using only statistically significant variables that predicted recurrence we developed an equation that calculates the relative risk of recurrence (Rr) as: Rr = exp[(0.51 x Race) + (0.12 x PSAST) + (0.25 x Postop Gleason sum) + (0.89 x Organ Conf.). These cases are then categorized into 3 distinct risk groups of relative risk of recurrence of low (< 10.0), intermediate (10.0 to 30.0) and high (> 30.0). Kaplan-Meier survival analysis of these 3 risk groups reveals that each category has significantly different risks of recurrence (p < 0.05). This model is validated with an independent cohort of radical prostatectomy patients treated at a different medical center by multiple primary surgeons.
This model suggests that race, preoperative prostate specific antigen, postoperative Gleason sum and pathological stage are important independent prognosticators of recurrence after radical prostatectomy for clinically localized prostate cancer. Race should be considered in future models that attempt to predict the likelihood of recurrence after surgery.
建立生物统计学模型以预测临床局限性前列腺癌根治性前列腺切除术后的复发风险很有必要。在术后肿瘤负荷最小的时候识别出这些高危患者,可使他们成为辅助治疗和/或二期临床试验的候选对象。本研究基于先前提出的预测根治性前列腺切除术后早期复发可能性的模型展开。
在我们的分析中,我们将年龄、种族、前列腺酸性磷酸酶和核分级与预处理前列腺特异性抗原、术后Gleason评分总和及病理分期这些既定的预后变量进行评估。
在仅使用预测复发的具有统计学意义的变量进行多变量Cox回归分析后,我们得出一个计算复发相对风险(Rr)的方程:Rr = exp[(0.51×种族)+(0.12×术前前列腺特异性抗原)+(0.25×术后Gleason评分总和)+(0.89×器官侵犯)]。然后将这些病例分为复发相对风险低(<10.0)、中(10.0至30.0)、高(>30.0)三个不同的风险组。对这三个风险组进行Kaplan-Meier生存分析显示,每组的复发风险有显著差异(p<0.05)。该模型在另一家医疗中心由多位主刀医生治疗的根治性前列腺切除术患者独立队列中得到验证。
该模型表明,种族、术前前列腺特异性抗原、术后Gleason评分总和及病理分期是临床局限性前列腺癌根治性前列腺切除术后复发的重要独立预后因素。在未来试图预测术后复发可能性的模型中应考虑种族因素。