Suppr超能文献

在各种实验条件下,纳米 FePd 双金属颗粒对 PCE、TCE 和 1,1,1-TCA 的降解。

Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.

机构信息

Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701, South Korea.

出版信息

Chemosphere. 2010 Nov;81(7):940-5. doi: 10.1016/j.chemosphere.2010.07.054. Epub 2010 Aug 17.

Abstract

The degradation of chlorinated organic compounds, such as PCE (tetrachloroethene), TCE (trichloroethene) and 1,1,1-TCA (1,1,1-trichloroethane), was conducted using nanosized FePd bimetallic particles. In order to enhance the reactivity of ZVI (zero valent iron) nanoparticles, surface modification of ZVI nanoparticles was performed using Pd and CMC (carboxymethyl cellulose). The surface modification was found to form CMC-stabilized FePd bimetallic nanoparticles (CMC-FePd). The average TCE removal efficiency by the CMC-FePd was significantly increased by ∼85% compared to employing conventional ZVI nanoparticles (∼15%). This increase in the TCE removal efficiency was most likely due to the increased amount of atomic hydrogen produced by the formation of CMC-FePd. For PCE and 1,1,1-TCA, the removal efficiencies by CMC-FePd were approximately 80% and 56%, respectively. For all three chlorinated organic compounds, the amount of Cl- ions in the aqueous phase during the degradation increased with increasing reaction time. This result suggests that the main degradation mechanism of the chlorinated compounds by CMC-FePd was reductive dechlorination.

摘要

采用纳米尺寸的 FePd 双金属颗粒对氯代有机化合物(如 PCE[四氯乙烯]、TCE[三氯乙烯]和 1,1,1-TCA[1,1,1-三氯乙烷])进行降解。为了提高 ZVI(零价铁)纳米颗粒的反应活性,采用 Pd 和 CMC(羧甲基纤维素)对 ZVI 纳米颗粒进行表面改性。研究发现,表面改性形成了 CMC 稳定的 FePd 双金属纳米颗粒(CMC-FePd)。与使用传统 ZVI 纳米颗粒(约 15%)相比,CMC-FePd 对 TCE 的去除效率显著提高了约 85%。这种 TCE 去除效率的提高很可能是由于形成 CMC-FePd 而产生了更多的原子氢。对于 PCE 和 1,1,1-TCA,CMC-FePd 的去除效率分别约为 80%和 56%。对于所有三种氯代有机化合物,在降解过程中,水相中 Cl-离子的数量随反应时间的增加而增加。这一结果表明,CMC-FePd 对氯代化合物的主要降解机制是还原脱氯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验