Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA.
Nature. 2010 Aug 19;466(7309):950-3. doi: 10.1038/nature09293.
Finding ways to achieve higher values of the transition temperature, T(c), in superconductors remains a great challenge. The superconducting phase is often one of several competing types of electronic order, including antiferromagnetism and charge density waves. An emerging trend documented in heavy-fermion and organic conductors is that the maximum T(c) for superconductivity occurs under external conditions that cause the critical temperature for a competing order to go to zero. Recently, such competition has been found in multilayer copper oxide high-temperature superconductors (HTSCs) that possess two crystallographically inequivalent CuO(2) planes in the unit cell. However, whether the competing electronic state can be suppressed to enhance T(c) in HTSCs remains an open question. Here we show that pressure-driven phase competition leads to an unusual two-step enhancement of T(c) in optimally doped trilayer Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi2223). We find that T(c) first increases with pressure and then decreases after passing through a maximum. Unexpectedly, T(c) increases again when the pressure is further raised above a critical value of around 24 GPa, surpassing the first maximum. The presence of this critical pressure is a manifestation of the crossover from the competing order to superconductivity in the inner of the three CuO(2) planes. We suggest that the increase at higher pressures occurs as a result of competition between pairing and phase ordering in different CuO(2) planes.
寻找提高超导体转变温度 T(c)值的方法仍然是一个巨大的挑战。超导相通常是几种竞争类型的电子有序之一,包括反铁磁性和电荷密度波。在重费米子和有机导体中记录到的一个新趋势是,超导的最大 T(c)值出现在导致竞争有序的临界温度降至零时的外部条件下。最近,在具有两个晶相不等同的 CuO(2)面的单元晶格的多层铜氧化物高温超导体(HTSC)中发现了这种竞争。然而,竞争的电子态是否可以被抑制以提高 HTSC 的 T(c)仍然是一个悬而未决的问题。在这里,我们表明压力驱动的相竞争导致了最优掺杂的三层 Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta)(Bi2223)中 T(c)的异常两步增强。我们发现 T(c)首先随压力增加,然后在达到最大值后减小。出乎意料的是,当压力进一步升高到约 24 GPa 的临界值以上时,T(c)再次增加,超过了第一个最大值。这个临界压力的存在是三个 CuO(2)面内部从竞争有序到超导的交叉的表现。我们认为,在更高压力下的增加是由于不同 CuO(2)面之间的配对和相序竞争的结果。