Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
Langmuir. 2010 Sep 21;26(18):15010-21. doi: 10.1021/la102579t.
Two organometallic complexes having cyclopentadienyldiazonium ligands have been isolated and characterized by spectroscopy, X-ray crystallography, and electrochemistry. Both CoCp(η(5)-C(5)H(4)N(2))(2+) (2(2+)) and Mn(CO)(3)(η(5)-C(5)H(4)N(2))(+) (3(+)) undergo facile cyclopentadienyldiazonium ligand-based one-electron reductions which liberate dinitrogen and result in strong binding of the cyclopentadienyl ligand to a glassy carbon surface, similar to the processes well established for organic aryldiazonium salts. The organometallic-modified electrodes are robust and have a thickness of approximately one monolayer (Γ = (2-4) × 10(-10) mol cm(-2)). Their voltammetric responses are as expected for a cobaltocenium-modified electrode, CoCp(η(5)-C(5)H(4)-E), where Cp = cyclopentadienyl and E = electrode, and a "cymantrene"-modified electrode Mn(CO)(3)(η(5)-C(5)H(4)-E). The cobaltocenium electrode has two cathodic surface waves. The first (E(1/2) = -1.34 V vs ferrocene) is highly reversible, whereas the second (E(pc) = -2.4 V) is not, consistent with the known behavior of cobaltocenium. The cymantrene-substituted electrode has a partially chemically reversible anodic wave at E(1/2) = 0.96 V, also consistent with the behavior of its Mn(CO)(3)Cp parent. Many of the properties of aryl-modified electrodes, such as "blockage" of the voltammetric responses of test analytes, are also seen for the organometallic-modified electrodes. Surface-based substitution of a carbonyl group by a phosphite ligand, P(OR)(3), R = Ph or Me, was observed when the cymantrene-modified electrode was anodically oxidized in the presence of a phosphite ligand. The successful grafting of organometallic moieties by direct bonding of a cyclopentadienyl ligand to electrode surfaces expands the chemical and electrochemical dimensions of diazonium-based modified electrodes.
已经通过光谱学、X 射线晶体学和电化学手段分离并鉴定了两个具有环戊二烯二氮鎓配体的有机金属配合物。CoCp(η(5)-C(5)H(4)N(2))(2+) (2(2+)) 和 Mn(CO)(3)(η(5)-C(5)H(4)N(2))(+) (3(+)) 都可以很容易地进行基于环戊二烯二氮鎓配体的单电子还原,从而释放出氮气,并导致环戊二烯配体强烈结合到玻璃碳表面,类似于有机芳基重氮盐的过程。有机金属修饰电极坚固耐用,厚度约为单层(Γ = (2-4) × 10(-10) mol cm(-2))。它们的伏安响应与钴卡宾修饰电极CoCp(η(5)-C(5)H(4)-E) 相符,其中 Cp = 环戊二烯基,E = 电极,并且与“金刚烷”-修饰电极 Mn(CO)(3)(η(5)-C(5)H(4)-E)相符。钴卡宾电极有两个阴极表面波。第一个(E(1/2) = -1.34 V 相对于铁)高度可逆,而第二个(E(pc) = -2.4 V)则不可逆,与钴卡宾的已知行为一致。金刚烷取代电极在 E(1/2) = 0.96 V 处具有部分化学可逆的阳极波,这也与它的 Mn(CO)(3)Cp 母体的行为一致。芳基修饰电极的许多性质,例如测试分析物的伏安响应的“阻塞”,也适用于有机金属修饰电极。当金刚烷修饰电极在膦配体存在下阳极氧化时,观察到羰基通过膦配体被磷酰基取代。通过环戊二烯配体直接键合到电极表面成功接枝有机金属部分,扩展了基于重氮盐的修饰电极的化学和电化学维度。