The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, USA.
Acc Chem Res. 2010 Nov 16;43(11):1396-407. doi: 10.1021/ar100043u. Epub 2010 Aug 20.
With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the complex interactions taking place in π-conjugated polymers with intramolecular "donor-acceptor" characteristics.
随着用于太阳能电池的光收集有机材料和具有精细调节颜色的用于非发射电致变色器件(例如,智能窗,电子纸)的分子系统的发展,仍有许多技术挑战需要克服。多年来,“光谱工程”(调整分子物理与发生在整个电磁频谱中的各种光学现象之间的复杂相互作用)的概念在π-共轭有机聚合物领域变得越来越重要。在光谱工程工具箱中,“给体-受体”方法沿π-共轭主链使用交替的富电子和缺电子部分。这种方法在合成具有有用的光伏和电致变色性能的双带和宽吸收的生色团方面特别有价值。在本说明中,我们重点介绍并深入探讨了围绕使用“给体-受体”方法构建的半导体聚合物中有时遇到的双带吸收的起源的当前争议。基于经验证据,我们提供了一些示意性表示来描述在改变富电子和缺电子取代基沿π-共轭主链的相对组成时观察到的双带光谱吸收的演变可能的机制。同时,我们提请注意用于估计和比较具有不同重复单元长度的聚合物生色团的吸收系数的方法的选择,并且在其主链上包含各种程度的可溶性侧链。最后,我们讨论了“给体-受体”系统应该比其“全给体”对应物具有系统地更低的吸收系数的常见假设。所提出的模型指出了重要的理论参数,这些参数可以在高分子水平上进一步探索,以帮助研究人员充分利用具有分子内“给体-受体”特性的π-共轭聚合物中发生的复杂相互作用。