Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.
J Anat. 2010 Oct;217(4):368-80. doi: 10.1111/j.1469-7580.2010.01274.x. Epub 2010 Aug 18.
The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among the earliest born neocortical cells, whereas in primate, neurons are added to the subplate throughout cortical neurogenesis. Magnetic resonance imaging and histochemical studies show that the human subplate grows in size until the end of the second trimester. Previous microarray experiments in mice have shown several genes that are specifically expressed in the subplate layer of the rodent dorsal cortex. Here we examined the human subplate for some of these markers. In the human dorsal cortex, connective tissue growth factor-positive neurons can be seen in the ventricular zone at 15-22 postconceptional weeks (PCW) (most at 17 PCW) and are present in the subplate at 22 PCW. The nuclear receptor-related 1 protein is mostly expressed in the subplate in the dorsal cortex, but also in lower layer 6 in the lateral and perirhinal cortex, and can be detected from 12 PCW. Our results suggest that connective tissue growth factor- and nuclear receptor-related 1-positive cells are two distinct cell populations of the human subplate. Furthermore, our microarray analysis in rodent suggested that subplate neurons produce plasma proteins. Here we demonstrate that the human subplate also expresses α2zinc-binding globulin and Alpha-2-Heremans-Schmid glycoprotein/human fetuin. In addition, the established subplate neuron marker neuropeptide Y is expressed superficially, whereas potassium/chloride co-transporter (KCC2)-positive neurons are localized in the deep subplate at 16 PCW. These observations imply that the human subplate shares gene expression patterns with rodent, but is more compartmentalized into superficial and deep sublayers. This increased complexity of the human subplate may contribute to differential vulnerability in response to hypoxia/ischaemia across the depth of the cortex. Combining knowledge of cell-type specific subplate gene expression with modern imaging methods will enable a better understanding of neuropathologies involving the subplate.
基板是一个主要的过渡区,包含参与皮质发育几个关键步骤的早熟神经元。在小鼠中,大多数基板神经元形成一个紧密的层,但在人类中则分散在更大的区域。在啮齿动物中,基板神经元是最早产生的新皮质细胞之一,而在灵长类动物中,神经元在整个皮质神经发生过程中被添加到基板中。磁共振成像和组织化学研究表明,人类基板在第二个妊娠中期结束前会继续生长。以前在小鼠中的微阵列实验表明,有几个基因在啮齿动物背侧皮质的基板层中特异性表达。在这里,我们检查了人类基板中是否存在其中一些标记物。在人类背侧皮质中,可在 15-22 孕周(大多数在 17 孕周)的脑室区中看到结缔组织生长因子阳性神经元,并在 22 孕周时存在于基板中。核受体相关 1 蛋白主要在背侧皮质的基板中表达,但也在外侧和旁嗅皮质的下层 6 中表达,从 12 孕周就可以检测到。我们的结果表明,结缔组织生长因子和核受体相关 1 阳性细胞是人类基板中的两个不同细胞群。此外,我们在啮齿动物中的微阵列分析表明,基板神经元产生血浆蛋白。在这里,我们证明人类基板也表达α2 锌结合球蛋白和 Alpha-2-Heremans-Schmid 糖蛋白/人胎球蛋白。此外,已建立的基板神经元标记物神经肽 Y 表达在浅层,而钾/氯离子共转运蛋白(KCC2)阳性神经元在 16 孕周时定位于基板深层。这些观察结果表明,人类基板与啮齿动物具有相似的基因表达模式,但更分为浅层和深层基板。人类基板的这种复杂性增加可能导致皮质深度对缺氧/缺血的反应存在差异。将基板特定细胞类型的基因表达知识与现代成像方法相结合,将有助于更好地理解涉及基板的神经病理学。