Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):447-51. doi: 10.1016/j.colsurfb.2010.07.038. Epub 2010 Jul 23.
A parallel microscopic imaging technique, surface plasmon microscopy (SPM)-surface plasmon fluorescence microscopy (SPFM), is introduced as a versatile analytical tool to monitor biochips. In spite of the fact that the fluorescence excited by surface plasmon is 1-2 order stronger compared with the total internal reflection fluorescence microscopy, SPFM has not fully utilized its advantages because fluorescence from fluorophores near the gold surface is almost entirely quenched due to the Förster energy transfer. In this study, SiO2 layer sputtered on the gold substrate suppressed the quenching of fluorescence and enabled a parallel measurement of SPM and SPFM. As a model system, micropatterned membranes composed of polymeric and fluid phospholipid bilayers were employed. The difference of film thickness could be detected by SPM, and SPFM provided information on the composition and structure of membranes, enabling the distinction between polymeric and fluid phospholipid bilayers. These results suggest the general applicability of SPM-SPFM for various formats of biochips.
一种平行的微观成像技术,表面等离激元显微镜(SPM)-表面等离激元荧光显微镜(SPFM),被引入作为一种通用的分析工具来监测生物芯片。尽管表面等离激元激发的荧光比全内反射荧光显微镜强 1-2 个数量级,但 SPFM 尚未充分利用其优势,因为由于福斯特能量转移,金表面附近荧光团的荧光几乎完全被猝灭。在这项研究中,在金基底上溅射的 SiO2 层抑制了荧光的猝灭,并能够平行测量 SPM 和 SPFM。作为模型系统,使用由聚合和流体磷脂双层组成的微图案化膜。SPM 可以检测到膜厚度的差异,而 SPFM 提供了关于膜的组成和结构的信息,能够区分聚合和流体磷脂双层。这些结果表明 SPM-SPFM 对于各种形式的生物芯片具有普遍适用性。