Suppr超能文献

利用 pOBCol3.6GFP 和 pOBCol2.3GFP 转基因小鼠鉴定成牙本质细胞分化过程中早期和晚期极化阶段的细胞。

Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice.

机构信息

Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.

出版信息

Bone. 2010 Nov;47(5):948-58. doi: 10.1016/j.bone.2010.08.009. Epub 2010 Aug 20.

Abstract

Transgenic mouse lines in which GFP expression is under the control of tissue- and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study, we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous subpopulations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization, whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast.

摘要

转绿色荧光蛋白(GFP)表达受组织和阶段特异性启动子控制的转基因小鼠系为鉴定和分离沿谱系分化的特定阶段的细胞提供了强大的实验工具。在本研究中,我们使用源自 pOBCol3.6GFP 和 pOBCol2.3GFP 转基因小鼠牙髓的原代细胞培养物作为模型,开发用于祖细胞向早期成牙本质细胞分化的标记物。我们分析了 2.3-GFP 和 3.6-GFP 在体外矿化过程中的时空表达。通过使用流式细胞术根据 GFP 表达分离细胞,我们获得了相对同质的细胞亚群,并分析了它们的牙本质发生潜力及其向成牙本质细胞的分化。我们的观察结果表明,这些转基因在基质沉积开始之前和在极化的不同阶段的细胞中被激活。3.6-GFP 转基因在早期极化阶段的细胞中被激活,而 2.3-GFP 转基因在极化后期被激活,就在分泌性成牙本质细胞形成之前或形成时。

相似文献

2
Identification of secretory odontoblasts using DMP1-GFP transgenic mice.
Bone. 2011 Apr 1;48(4):927-37. doi: 10.1016/j.bone.2010.12.008. Epub 2010 Dec 21.
3
Analysis of developmental potentials of dental pulp in vitro using GFP transgenes.
Orthod Craniofac Res. 2005 Nov;8(4):252-8. doi: 10.1111/j.1601-6343.2005.00347.x.
5
New insight into progenitor/stem cells in dental pulp using Col1a1-GFP transgenes.
Cells Tissues Organs. 2004;176(1-3):120-33. doi: 10.1159/000075033.
6
Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice.
Genesis. 2019 Oct;57(10):e23324. doi: 10.1002/dvg.23324. Epub 2019 Jul 4.
7
Mineralization and expression of Col1a1-3.6GFP transgene in primary dental pulp culture.
Cells Tissues Organs. 2009;189(1-4):163-8. doi: 10.1159/000154813. Epub 2008 Sep 9.

引用本文的文献

3
The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration.
Front Pharmacol. 2021 Jul 20;12:680209. doi: 10.3389/fphar.2021.680209. eCollection 2021.
4
Wnt/β-Catenin Signaling Promotes the Formation of Preodontoblasts In Vitro.
J Dent Res. 2021 Apr;100(4):387-396. doi: 10.1177/0022034520967353. Epub 2020 Oct 26.
5
Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice.
Genesis. 2019 Oct;57(10):e23324. doi: 10.1002/dvg.23324. Epub 2019 Jul 4.
6
Activation of αSMA expressing perivascular cells during reactionary dentinogenesis.
Int Endod J. 2019 Jan;52(1):68-76. doi: 10.1111/iej.12983. Epub 2018 Jul 26.
7
Understanding Tendons: Lessons from Transgenic Mouse Models.
Stem Cells Dev. 2018 Sep 1;27(17):1161-1174. doi: 10.1089/scd.2018.0121. Epub 2018 Aug 10.
8
Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds .
Regen Eng Transl Med. 2017 Jun;3(2):94-105. doi: 10.1007/s40883-017-0033-z. Epub 2017 May 30.
9
FGF Signaling Prevents the Terminal Differentiation of Odontoblasts.
J Dent Res. 2017 Jun;96(6):663-670. doi: 10.1177/0022034517691732. Epub 2017 Feb 7.
10
Enhanced Dentinogenesis of Pulp Progenitors by Early Exposure to FGF2.
J Dent Res. 2015 Nov;94(11):1582-90. doi: 10.1177/0022034515599768. Epub 2015 Aug 14.

本文引用的文献

1
Mutant DLX 3 disrupts odontoblast polarization and dentin formation.
Dev Biol. 2010 Aug 15;344(2):682-92. doi: 10.1016/j.ydbio.2010.05.499. Epub 2010 May 25.
2
Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars.
Bone. 2010 Jun;46(6):1639-51. doi: 10.1016/j.bone.2010.02.019. Epub 2010 Feb 26.
4
Primary cilia of odontoblasts: possible role in molar morphogenesis.
J Dent Res. 2009 Oct;88(10):910-5. doi: 10.1177/0022034509345822.
5
Defining a visual marker of osteoprogenitor cells within the periodontium.
J Periodontal Res. 2010 Feb;45(1):60-70. doi: 10.1111/j.1600-0765.2009.01201.x. Epub 2009 Apr 30.
6
Spatial and temporal expression of KLF4 and KLF5 during murine tooth development.
Arch Oral Biol. 2009 May;54(5):403-11. doi: 10.1016/j.archoralbio.2009.02.003. Epub 2009 Mar 6.
7
Dental pulp stem cells: what, where, how?
Int J Paediatr Dent. 2009 Jan;19(1):61-70. doi: 10.1111/j.1365-263X.2008.00964.x.
8
Mineralization and expression of Col1a1-3.6GFP transgene in primary dental pulp culture.
Cells Tissues Organs. 2009;189(1-4):163-8. doi: 10.1159/000154813. Epub 2008 Sep 9.
9
10
Stem cells and the dental pulp: potential roles in dentine regeneration and repair.
Oral Dis. 2007 Mar;13(2):151-7. doi: 10.1111/j.1601-0825.2006.01346.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验