Munn A L, Silveira L, Elgort M, Payne G S
Department of Biological Chemistry, UCLA School of Medicine 90024.
Mol Cell Biol. 1991 Aug;11(8):3868-78. doi: 10.1128/mcb.11.8.3868-3878.1991.
The gene encoding clathrin heavy chain in Saccharomyces cerevisiae (CHC1) is not essential for growth in most laboratory strains tested. However, in certain genetic backgrounds, a deletion of CHC1 (chc1) results in cell death. Lethality in these chc1 strains is determined by a locus designated SCD1 (suppressor of clathrin deficiency) which is unlinked to CHC1 (S. K. Lemmon and E. W. Jones, Science 238:504-509, 1987). The lethal allele of SCD1 has no effect on cell growth when the wild-type version of CHC1 is present. This result led to the proposal that most yeast strains are viable in the absence of clathrin heavy chain because they possess the SCD1 suppressor. Discovery of another yeast strain that cannot grow without clathrin heavy chain has allowed us to perform a genetic test of the suppressor hypothesis. Genetic crosses show that clathrin-deficient lethality in the latter strain is conferred by a single genetic locus (termed CDL1, for clathrin-deficient lethality). By constructing strains in which CHC1 expression is regulated by the GAL10 promoter, we demonstrate that the lethal alleles of SCD1 and CDL1 are recessive. In both cases, very low expression of CHC1 can allow cells to escape from lethality. Genetic complementation and segregation analyses indicate that CDL1 and SCD1 are distinct genes. The lethal CDL1 allele does not cause a defect in the secretory pathway of either wild-type or clathrin heavy-chain-deficient yeast. A systematic screen to identify mutants unable to grow in the absence of clathrin heavy chain uncovered numerous genes similar to SCD1 and CDL1. These findings argue against the idea that viability of chc1 cells is due to genetic suppression, since this hypothesis would require the existence of a large number of unlinked genes, all of which are required for suppression. Instead, lethality appears to be a common, nonspecific occurrence when a second-site mutation arises in a strain whose cell growth is already severely compromised by the lack of clathrin heavy chain.
在大多数测试的酿酒酵母实验室菌株中,编码网格蛋白重链的基因(CHC1)对于生长并非必需。然而,在某些遗传背景下,CHC1的缺失(chc1)会导致细胞死亡。这些chc1菌株中的致死性由一个名为SCD1(网格蛋白缺陷抑制因子)的位点决定,该位点与CHC1不连锁(S.K.莱蒙和E.W.琼斯,《科学》238:504 - 509,1987)。当存在野生型CHC1时,SCD1的致死等位基因对细胞生长没有影响。这一结果导致有人提出,大多数酵母菌株在没有网格蛋白重链的情况下仍能存活,是因为它们拥有SCD1抑制因子。发现另一种没有网格蛋白重链就无法生长的酵母菌株,使我们能够对抑制因子假说进行遗传学测试。遗传杂交表明,后一种菌株中网格蛋白缺陷导致的致死性由一个单一的遗传位点(称为CDL1,即网格蛋白缺陷致死性)赋予。通过构建CHC1表达受GAL10启动子调控的菌株,我们证明SCD1和CDL1的致死等位基因是隐性的。在这两种情况下,CHC1的极低表达都能使细胞逃避致死性。遗传互补和分离分析表明,CDL1和SCD1是不同的基因。致死性的CDL1等位基因在野生型或网格蛋白重链缺陷型酵母的分泌途径中均不造成缺陷。一项系统性筛选,旨在鉴定在没有网格蛋白重链时无法生长的突变体,发现了许多与SCD1和CDL1相似的基因。这些发现反对了chc1细胞的存活是由于遗传抑制的观点,因为这一假说需要存在大量不连锁的基因,而所有这些基因都是抑制所必需的。相反,当在一个已经因缺乏网格蛋白重链而细胞生长严重受损的菌株中出现第二位点突变时,致死性似乎是一种常见的、非特异性的现象。