Payne G S, Hasson T B, Hasson M S, Schekman R
Department of Biochemistry, University of California, Berkeley 94720.
Mol Cell Biol. 1987 Nov;7(11):3888-98. doi: 10.1128/mcb.7.11.3888-3898.1987.
Clathrin is important but not essential for yeast cell growth and protein secretion. Diploid Saccharomyces cerevisiae cells heterozygous for a clathrin heavy-chain gene (CHC1) disruption give rise to viable, slow-growing, clathrin heavy-chain-deficient meiotic progeny (G. Payne and R. Schekman, Science 230:1009-1014, 1985). The possibility that extragenic suppressors account for growth of clathrin-deficient cells was examined by deletion of CHC1 from haploid cell genomes by single-step gene transplacement and independently by introduction of a centromere plasmid carrying the complete CHC1 gene into diploid cells before eviction of a chromosomal CHC1 locus and subsequent tetrad analysis. Both approaches yielded clathrin-deficient haploid strains. In mutants missing at least 95% of the CHC1 coding domain, transcripts related to CHC1 were not detected. The time course of invertase modification and secretion was measured to assess secretory pathway functions in the viable clathrin-deficient cells. Core-glycosylated invertase was converted to the mature, highly glycosylated form at equivalent rates in mutant and wild-type cells. Export of mature invertase from mutant cells was delayed but not prevented. Abnormal vacuoles, accumulated vesicles, and Golgi body-derived structures were visualized in mutant cells by electron microscopy. We conclude that extragenic suppressors do not account for the viability of clathrin-deficient cells and, furthermore, that many standard laboratory strains can sustain a CHC1 disruption. Clathrin does not appear to mediate protein transfer from the endoplasmic reticulum to the Golgi body but may function at a later stage of the secretory pathway.
网格蛋白对酵母细胞生长和蛋白质分泌很重要,但并非必不可少。杂合了网格蛋白重链基因(CHC1)破坏的二倍体酿酒酵母细胞会产生存活的、生长缓慢的、缺乏网格蛋白重链的减数分裂后代(G. Payne和R. Schekman,《科学》230:1009 - 1014,1985)。通过单步基因置换从单倍体细胞基因组中删除CHC1,并独立地通过在染色体CHC1位点被剔除和随后的四分体分析之前,将携带完整CHC1基因的着丝粒质粒导入二倍体细胞,来研究基因外抑制子是否解释了网格蛋白缺陷细胞的生长情况。两种方法都产生了缺乏网格蛋白的单倍体菌株。在缺失至少95% CHC1编码域的突变体中,未检测到与CHC1相关的转录本。测量了转化酶修饰和分泌的时间进程,以评估存活的网格蛋白缺陷细胞中的分泌途径功能。在突变细胞和野生型细胞中,核心糖基化的转化酶以相同的速率转化为成熟的、高度糖基化的形式。成熟转化酶从突变细胞中的输出延迟但未被阻止。通过电子显微镜在突变细胞中观察到异常的液泡、积累的囊泡和高尔基体衍生结构。我们得出结论,基因外抑制子并不能解释网格蛋白缺陷细胞的存活能力,此外,许多标准实验室菌株可以维持CHC1的破坏。网格蛋白似乎不介导蛋白质从内质网到高尔基体的转运,但可能在分泌途径的后期发挥作用。