Suppr超能文献

角质形成细胞的单细胞力学。

Single cell mechanics of keratinocyte cells.

机构信息

Department of Chemistry, University of California, One Shields Ave., Davis, CA 95616, USA.

出版信息

Ultramicroscopy. 2010 Nov;110(12):1435-42. doi: 10.1016/j.ultramic.2010.07.009. Epub 2010 Aug 4.

Abstract

Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

摘要

角朊细胞是人体皮肤最上层——表皮的主要细胞类型。本研究采用基于原子力显微镜的单细胞压缩技术,研究并比较了单个角朊细胞抵抗外部压力和整体破裂力的能力与各种细胞类型的差异。结果表明,角朊细胞的硬度比其他细胞类型(如白细胞、乳腺上皮细胞、成纤维细胞或神经元细胞)高 6-70 倍,与其他细胞类型不同的是,即使在细胞死亡后,它们仍保持较高的力学强度。角朊细胞的力-变形曲线中没有出现细胞膜破裂峰,并且在第二次加载循环中具有较高的刚度,这表明它们独特的机械阻力是由细胞骨架决定的。一个简单的分析模型可以量化角朊细胞细胞骨架的杨氏模量,高达 120-340Pa。选择性破坏两种主要的细胞骨架网络,肌动蛋白丝和微管,对角朊细胞力学没有显著影响。发现 F-肌动蛋白对角朊细胞在受压时的变形有影响。在角朊细胞压缩过程中,质膜伸展形成周边泡。没有 F-肌动蛋白解聚的细胞在受到压力时,会将质膜从下面的细胞骨架上分离出来,而不是起泡。另一方面,表达突变角蛋白(细胞系,KEB-7)的角朊细胞的压缩力比具有正常角蛋白网络的对照细胞系低 1.6-2.2 倍。因此,我们推断角蛋白中间丝网络对角朊细胞的高硬度和高弹性起作用。这可能表现为人体表皮的粗糙保护特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验