Lulevich Valentin, Zink Tiffany, Chen Huan-Yuan, Liu Fu-Tong, Liu Gang-Yu
Chemistry Department, University of California, Davis, California 95616, USA.
Langmuir. 2006 Sep 12;22(19):8151-5. doi: 10.1021/la060561p.
We report herein the establishment of a single-cell compression method based on force measurements in atomic force microscopy (AFM). The high-resolution bright-field or confocal laser scanning microscopy guides the location of the AFM probe and then monitors the deformation of cell shape, while microsphere-modified AFM probes compress the cell and measure the force. Force and deformation profiles of living cells reveal a cubic relationship at small deformation (<30%), multiple peaks at 30-70% compression, and a rapid increase at over 80% deformation. The initial compression may be described qualitatively and quantitatively using a simple model of a nonpermeable balloon filled with incompressible fluid. Stress peaks reflect cell membrane rupture, followed by the deformation and rupture of intracellular components, beyond which the cell responses become irreversible. The Young's modulus and bending constant of living cell membranes are extracted from the balloon models, with 10-30 MPa and 17-52 kT, respectively. The initial compression of dead and fixed cells is modeled using Hertzian contact theory, assuming that the cell is a homogeneous sphere. Dead cells exhibit a cytoskeleton elasticity of 4-7.5 kPa, while fixation treatment leads to a dramatic increase in the cytoskeletal Young's modulus (150-230 kPa) due to protein cross-linking by imine bonds. These results demonstrate the high sensitivity of the single-cell compression method to the molecular-level structural changes of cells, which suggests a new generic platform for investigating cell mechanics in tissue engineering and cancer research.
我们在此报告基于原子力显微镜(AFM)中的力测量建立的单细胞压缩方法。高分辨率明场或共聚焦激光扫描显微镜引导AFM探针的定位,然后监测细胞形状的变形,而微球修饰的AFM探针压缩细胞并测量力。活细胞的力和变形曲线在小变形(<30%)时呈立方关系,在30 - 70%压缩时出现多个峰值,在超过80%变形时迅速增加。初始压缩可以使用一个充满不可压缩流体的不可渗透气球的简单模型进行定性和定量描述。应力峰值反映细胞膜破裂,随后是细胞内成分的变形和破裂,在此之后细胞反应变得不可逆。从气球模型中提取活细胞膜的杨氏模量和弯曲常数,分别为10 - 30 MPa和17 - 52 kT。死亡和固定细胞的初始压缩使用赫兹接触理论进行建模,假设细胞是一个均匀的球体。死细胞表现出4 - 7.5 kPa的细胞骨架弹性,而固定处理由于亚胺键介导的蛋白质交联导致细胞骨架杨氏模量显著增加(150 - 230 kPa)。这些结果证明了单细胞压缩方法对细胞分子水平结构变化的高灵敏度,这为组织工程和癌症研究中研究细胞力学提供了一个新的通用平台。