Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304-5543, USA.
J Biol Chem. 2010 Oct 29;285(44):33930-9. doi: 10.1074/jbc.M110.150151. Epub 2010 Aug 20.
Calmodulin (CaM) is a ubiquitous Ca(2+) sensor protein that plays a pivotal role in regulating innumerable neuronal functions, including synaptic transmission. In cortical neurons, most neurotransmitter release is triggered by Ca(2+) binding to synaptotagmin-1; however, a second delayed phase of release, referred to as asynchronous release, is triggered by Ca(2+) binding to an unidentified secondary Ca(2+) sensor. To test whether CaM could be the enigmatic Ca(2+) sensor for asynchronous release, we now use in cultured neurons short hairpin RNAs that suppress expression of ∼70% of all neuronal CaM isoforms. Surprisingly, we found that in synaptotagmin-1 knock-out neurons, the CaM knockdown caused a paradoxical rescue of synchronous release, instead of a block of asynchronous release. Gene and protein expression studies revealed that both in wild-type and in synaptotagmin-1 knock-out neurons, the CaM knockdown altered expression of >200 genes, including that encoding synaptotagmin-2. Synaptotagmin-2 expression was increased several-fold by the CaM knockdown, which accounted for the paradoxical rescue of synchronous release in synaptotagmin-1 knock-out neurons by the CaM knockdown. Interestingly, the CaM knockdown primarily activated genes that are preferentially expressed in caudal brain regions, whereas it repressed genes in rostral brain regions. Consistent with this correlation, quantifications of protein levels in adult mice uncovered an inverse relationship of CaM and synaptotagmin-2 levels in mouse forebrain, brain stem, and spinal cord. Finally, we employed molecular replacement experiments using a knockdown rescue approach to show that Ca(2+) binding to the C-lobe but not the N-lobe of CaM is required for suppression of synaptotagmin-2 expression in cortical neurons. Our data describe a previously unknown, Ca(2+)/CaM-dependent regulatory pathway that controls the expression of synaptic proteins in the rostral-caudal neuraxis.
钙调蛋白(CaM)是一种普遍存在的 Ca(2+) 传感器蛋白,在调节无数神经元功能中起着关键作用,包括突触传递。在皮质神经元中,大多数神经递质释放是由 Ca(2+) 与突触融合蛋白-1 结合触发的;然而,第二种延迟释放阶段,称为异步释放,是由 Ca(2+) 与未识别的第二种 Ca(2+) 传感器结合触发的。为了测试 CaM 是否可以作为异步释放的神秘 Ca(2+) 传感器,我们现在在培养的神经元中使用短发夹 RNA 抑制约 70%的所有神经元 CaM 同工型的表达。令人惊讶的是,我们发现,在突触融合蛋白-1 敲除神经元中,CaM 敲低导致同步释放的反常拯救,而不是异步释放的阻断。基因和蛋白质表达研究表明,在野生型和突触融合蛋白-1 敲除神经元中,CaM 敲低改变了 >200 个基因的表达,包括编码突触融合蛋白-2 的基因。CaM 敲低使突触融合蛋白-2 的表达增加了数倍,这解释了 CaM 敲低在突触融合蛋白-1 敲除神经元中对同步释放的反常拯救。有趣的是,CaM 敲低主要激活了在尾部脑区优先表达的基因,而抑制了头部脑区的基因。与这一相关性一致,对成年小鼠蛋白质水平的定量分析揭示了 CaM 和突触融合蛋白-2 水平在小鼠前脑、脑干和脊髓中的反比关系。最后,我们采用分子置换实验和敲低拯救方法,表明 Ca(2+) 与 CaM 的 C 结构域结合而不是 N 结构域结合,是皮质神经元中突触融合蛋白-2 表达抑制所必需的。我们的数据描述了一个以前未知的、Ca(2+)/CaM 依赖性调节途径,该途径控制着头尾轴突中的突触蛋白表达。