Suppr超能文献

斑马鱼溶酶体糖苷酶的卵黄选择性沉积和甘露糖磷酸化。

Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish.

机构信息

From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.

From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.

出版信息

J Biol Chem. 2010 Oct 22;285(43):32946-32953. doi: 10.1074/jbc.M110.158295. Epub 2010 Aug 20.

Abstract

The regulation and function of lysosomal hydrolases during yolk consumption and embryogenesis in zebrafish are poorly understood. In an effort to better define the lysosomal biochemistry of this organism, we analyzed the developmental expression, biochemical properties, and function of several glycosidases in zebrafish eggs, embryos, and adult tissues. Our results demonstrated that the specific activity of most enzymes increases during embryogenesis, likely reflecting a greater need for turnover within the embryo as yolk-derived nutrients are depleted. Analysis of glycosidase activity in zebrafish and medaka eggs revealed selective deposition of enzymes required for the degradation of N-linked glycans, including an abundance of acidic mannosidases. Treatment of zebrafish embryos with the α-mannosidase inhibitor swainsonine resulted in the accumulation of glycosylated vitellogenin fragments and demonstrated a function for maternally deposited acid α-mannosidase in yolk consumption. Surprisingly, we also found that, unlike mammals, acid α-glucosidase from zebrafish and medaka does not appear to be modified with mannose 6-phosphate residues. We further showed these residues were not acquired on human acid α-glucosidase when expressed in zebrafish embryos, suggesting unique differences in the ability of the human and zebrafish N-acetylglucosamine-1-phosphotransferase to recognize and modify certain lysosomal glycosidases. Together, these results provide novel insight into the role of acidic glycosidases during yolk utilization and the evolution of the mannose 6-phosphate targeting system in vertebrates.

摘要

在斑马鱼中,溶酶体水解酶在卵黄消耗和胚胎发生过程中的调节和功能知之甚少。为了更好地定义该生物体的溶酶体生物化学,我们分析了几种糖苷酶在斑马鱼卵、胚胎和成年组织中的发育表达、生化特性和功能。我们的结果表明,大多数酶的比活在胚胎发生过程中增加,这可能反映了随着卵黄来源的营养物质被消耗,胚胎内部的周转需求增加。对斑马鱼和青鳉卵中糖苷酶活性的分析表明,需要降解 N 连接聚糖的酶选择性沉积,包括丰富的酸性甘露糖苷酶。用α-甘露糖苷酶抑制剂 swainsonine 处理斑马鱼胚胎会导致糖基化卵黄蛋白原片段的积累,并证明了母源性沉积的酸性α-甘露糖苷酶在卵黄消耗中的作用。令人惊讶的是,我们还发现,与哺乳动物不同,来自斑马鱼和青鳉的酸性α-葡萄糖苷酶似乎没有被甘露糖 6-磷酸残基修饰。我们进一步表明,当在斑马鱼胚胎中表达时,这些残基不会被人酸性α-葡萄糖苷酶获得,这表明人类和斑马鱼 N-乙酰葡糖胺-1-磷酸转移酶在识别和修饰某些溶酶体糖苷酶方面具有独特的差异。总之,这些结果为酸性糖苷酶在卵黄利用和脊椎动物甘露糖 6-磷酸靶向系统进化过程中的作用提供了新的见解。

相似文献

1
Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish.
J Biol Chem. 2010 Oct 22;285(43):32946-32953. doi: 10.1074/jbc.M110.158295. Epub 2010 Aug 20.
4
Characterization of a human core-specific lysosomal {alpha}1,6-mannosidase involved in N-glycan catabolism.
J Biol Chem. 2005 Nov 4;280(44):37204-16. doi: 10.1074/jbc.M508930200. Epub 2005 Aug 22.
6
Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.
PLoS One. 2010 Feb 3;5(2):e9006. doi: 10.1371/journal.pone.0009006.
7
The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10246-51. doi: 10.1073/pnas.1308453110. Epub 2013 Jun 3.
8
Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II.
Am J Pathol. 2009 Nov;175(5):2063-75. doi: 10.2353/ajpath.2009.090210. Epub 2009 Oct 15.

引用本文的文献

2
Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish.
J Lipid Res. 2019 Nov;60(11):1851-1867. doi: 10.1194/jlr.RA119000154. Epub 2019 Sep 27.
3
Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase.
Autophagy. 2017 Feb;13(2):386-403. doi: 10.1080/15548627.2016.1256934. Epub 2016 Nov 22.
5
FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis.
Biosci Rep. 2015 Oct 1;35(6):e00278. doi: 10.1042/BSR20150151.
8
"Casting" light on the role of glycosylation during embryonic development: insights from zebrafish.
Glycoconj J. 2013 Jan;30(1):33-40. doi: 10.1007/s10719-012-9390-5. Epub 2012 May 26.
9
GlycoFish: a database of zebrafish N-linked glycoproteins identified using SPEG method coupled with LC/MS.
Anal Chem. 2011 Jul 1;83(13):5296-303. doi: 10.1021/ac200726q. Epub 2011 Jun 8.

本文引用的文献

1
Lessons learnt from animal models: pathophysiology of neuropathic lysosomal storage disorders.
J Inherit Metab Dis. 2010 Aug;33(4):363-71. doi: 10.1007/s10545-010-9078-6. Epub 2010 May 7.
2
N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites.
Glycoconj J. 2010 Jan;27(1):159-69. doi: 10.1007/s10719-009-9268-3.
3
Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II.
Am J Pathol. 2009 Nov;175(5):2063-75. doi: 10.2353/ajpath.2009.090210. Epub 2009 Oct 15.
4
A novel functional role of iduronate-2-sulfatase in zebrafish early development.
Matrix Biol. 2010 Jan;29(1):43-50. doi: 10.1016/j.matbio.2009.09.001. Epub 2009 Sep 15.
7
Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins.
Biol Reprod. 2007 Jun;76(6):926-35. doi: 10.1095/biolreprod.106.059766. Epub 2007 Feb 21.
8
Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors.
Arch Biochem Biophys. 2005 Apr 15;436(2):246-53. doi: 10.1016/j.abb.2005.01.005.
10
The cell biology of lysosomal storage disorders.
Nat Rev Mol Cell Biol. 2004 Jul;5(7):554-65. doi: 10.1038/nrm1423.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验