Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain.
J Biol Chem. 2010 Nov 5;285(45):34549-56. doi: 10.1074/jbc.M110.154021. Epub 2010 Aug 22.
Proteins fold up by coordinating the different segments of their polypeptide chain through a network of weak cooperative interactions. Such cooperativity results in unfolding curves that are typically sigmoidal. However, we still do not know what factors modulate folding cooperativity or the minimal amount that ensures folding into specific three-dimensional structures. Here, we address these issues on BBL, a small helical protein that folds in microseconds via a marginally cooperative downhill process (Li, P., Oliva, F. Y., Naganathan, A. N., and Muñoz, V. (2009) Proc. Natl. Acad. Sci. USA. 106, 103-108). Particularly, we explore the effects of salt-induced screening of the electrostatic interactions in BBL at neutral pH and in acid-denatured BBL. Our results show that electrostatic screening stabilizes the native state of the neutral and protonated forms, inducing complete refolding of acid-denatured BBL. Furthermore, without net electrostatic interactions, the unfolding process becomes much less cooperative, as judged by the broadness of the equilibrium unfolding curve and the relaxation rate. Our experiments show that the marginally cooperative unfolding of BBL can still be made twice as broad while the protein retains its ability to fold into the native three-dimensional structure in microseconds. This result demonstrates experimentally that efficient folding does not require cooperativity, confirming predictions from theory and computer simulations and challenging the conventional biochemical paradigm. Furthermore, we conclude that electrostatic interactions are an important factor in determining folding cooperativity. Thus, electrostatic modulation by pH-salt and/or mutagenesis of charged residues emerges as an attractive tool for tuning folding cooperativity.
蛋白质通过弱协同相互作用网络协调其多肽链的不同片段来折叠。这种协同作用导致展开曲线通常呈“S”形。然而,我们仍然不知道是什么因素调节折叠协同性,或者确保折叠成特定三维结构的最小协同性。在这里,我们研究了 BBL 上的这些问题,BBL 是一种小的螺旋蛋白,通过边缘化的协同下坡过程在微秒内折叠(Li,P.,Oliva,F. Y.,Naganathan,A. N.,和 Muñoz,V.(2009)Proc. Natl. Acad. Sci. USA. 106,103-108)。特别是,我们探讨了在中性 pH 和酸性变性的 BBL 中盐诱导的静电相互作用屏蔽对 BBL 的影响。我们的结果表明,静电屏蔽稳定了中性和质子化形式的天然状态,诱导了酸性变性 BBL 的完全重折叠。此外,在没有净静电相互作用的情况下,展开过程的协同性大大降低,这可以从平衡展开曲线的宽度和弛豫率来判断。我们的实验表明,在保留蛋白质在微秒内折叠成天然三维结构的能力的情况下,BBL 的边缘化协同展开过程可以变宽两倍。这一结果从实验上证明了高效折叠不需要协同性,证实了理论和计算机模拟的预测,并挑战了传统的生化范式。此外,我们得出结论,静电相互作用是决定折叠协同性的一个重要因素。因此,通过 pH-盐的静电调节和/或带电残基的突变可以作为调节折叠协同性的一种有吸引力的工具。