Caperelli C A, Frey W A, Benkovic S J
Biochemistry. 1978 May 2;17(9):1699-704. doi: 10.1021/bi00602a018.
Isotope-trapping experiments with mental-free rabbit liver fructose 1,6-bisphosphatase have shown that enzyme-bound D-fructose 1,6-bisphosphate completely dissociates prior to enzyme turnover initiated by Mn2+ as the catalytic metal. The exchange rate of the binary enzyme-D-fructose 1,6-bisphosphate complex with the substrate pool is, therefore, more rapid than its conversion to products, suggesting that structural Mn2+ is necessary for productive substarate binding. Rapid-quench isotope-trapping experiments confirm the requirement for structural Mn2+ ions for productive binding to occur. These experiments also show that an ordered formation of the enzyme-Mn2+ s-D-fructose 1,6-bisphosphate ternary complex which features metal-ion addition prior to substrate constitutes a catalytically competent pathway in the mechanism of fructose 1,6-bisphosphatase and that all four subunits are active in a single turnover event.
对无金属兔肝果糖1,6 -二磷酸酶进行的同位素捕获实验表明,在由Mn2 +作为催化金属引发酶周转之前,与酶结合的D -果糖1,6 -二磷酸会完全解离。因此,二元酶 - D -果糖1,6 -二磷酸复合物与底物池的交换速率比其转化为产物的速率更快,这表明结构性Mn2 +对于有效的底物结合是必需的。快速淬灭同位素捕获实验证实了发生有效结合需要结构性Mn2 +离子。这些实验还表明,酶 - Mn2 + - D -果糖1,6 -二磷酸三元复合物的有序形成(其特征是在底物之前添加金属离子)构成了果糖1,6 -二磷酸酶机制中的一条具有催化活性的途径,并且所有四个亚基在单次周转事件中都是有活性的。