Benkovic P A, Caperelli C A, de Maine M, Benkovic S J
Proc Natl Acad Sci U S A. 1978 May;75(5):2185-9. doi: 10.1073/pnas.75.5.2185.
Atomic absorption determinations of zinc content were employed to demonstrate the technique to obtain zinc-free rabbit liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11). Reactivation of the apoenzyme by Zn(2+) is rapid (within 1 min) and restores up to 96% of the initial specific activity. Gel filtration measurements showed that the enzyme contains four binding sites for zinc per molecule, one per subunit. The dissociation constants for the initial two binding sites are less than 0.1 muM. In the presence of a substrate analog, (alpha + beta) methyl D-fructofuranoside 1,6-bisphosphate, at a level where two analog molecules are bound per phosphatase molecule, a total of eight Zn(2+) ions bind at 8 muM Zn(2+), revealing the presence of additional binding sites, including the catalytic one. The activity in the presence of Zn(2+) is maximal at ca. 8 muM Zn(2+), which corresponds to saturation of the four subunit sites plus the catalytic sites in the presence of substrate. At metal ion concentrations less than 10 muM, the order of activation is Zn(2+) > Mn(2+) > Mg(2+). In kinetic assays with two metal cofactors the effect of Zn(2+) at concentrations less than 10 muM on either the Mg(2+) or the Mn(2+) assays is inhibitory owing to the apparent formation of mixed (two different elements) metal ion-enzyme complexes possessing a catalytic activity that is measureable but lower than anticipated if the catalysis by the various metal ions is simply additive. Hence the activation by EDTA of the Mg(2+) and Mn(2+) assays is explicable in terms of Zn(2+) removal, thus eliminating mixed metal species. Collectively these observations suggest that fructose-1,6-bisphosphatase may function in vivo as a Zn(2+) metalloprotein.
采用原子吸收法测定锌含量,以展示获取无锌兔肝果糖-1,6-二磷酸酶(D-果糖-1,6-二磷酸1-磷酸水解酶,EC 3.1.3.11)的技术。脱辅基酶被Zn(2+)重新激活的过程很快(在1分钟内),可恢复高达96%的初始比活性。凝胶过滤测量表明,该酶每个分子含有四个锌结合位点,每个亚基一个。最初两个结合位点的解离常数小于0.1 μM。在存在底物类似物(α + β)甲基D-果糖呋喃糖苷1,6-二磷酸的情况下,当每个磷酸酶分子结合两个类似物分子时,在8 μM Zn(2+)浓度下共有八个Zn(2+)离子结合,这揭示了包括催化位点在内的其他结合位点的存在。在Zn(2+)存在的情况下,活性在约8 μM Zn(2+)时达到最大值,这对应于在有底物存在时四个亚基位点加上催化位点的饱和状态。在金属离子浓度低于10 μM时,激活顺序为Zn(2+) > Mn(2+) > Mg(2+)。在含有两种金属辅因子的动力学测定中,浓度低于10 μM的Zn(2+)对Mg(2+)或Mn(2+)测定的影响是抑制性的,这是由于明显形成了具有可测量催化活性但低于如果各种金属离子的催化作用简单相加时预期活性的混合(两种不同元素)金属离子 - 酶复合物。因此,EDTA对Mg(2+)和Mn(2+)测定的激活作用可以通过去除Zn(2+)来解释,从而消除混合金属物种。总的来说,这些观察结果表明果糖-1,6-二磷酸酶在体内可能作为一种Zn(2+)金属蛋白发挥作用。