Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, China.
Comput Med Imaging Graph. 2010 Dec;34(8):651-8. doi: 10.1016/j.compmedimag.2010.07.006. Epub 2010 Aug 21.
Efficient visualization of vascular structures is essential for therapy planning and medical education. Existing techniques achieve high-quality visualization of vascular surfaces at the cost of low rendering speed and large size of resulting surface. In this paper, we present an approach for visualizing vascular structures by exploiting the local curvature information of a given surface. To handle complex topology of loop and multiple parents and/or multiple children, bidirectional adaptive sampling and modified normal calculations at joints are proposed. The proposed method has been applied to cerebral vascular trees, liver vessel trees, and aortic vessel trees. The experimental results show that it can obtain a high-quality surface visualization with fewer polygons in the approximation.
高效地可视化血管结构对于治疗计划和医学教育至关重要。现有的技术虽然能够以较低的渲染速度和较大的表面尺寸为代价,实现高质量的血管表面可视化。在本文中,我们提出了一种利用给定表面的局部曲率信息来可视化血管结构的方法。为了处理环和多个父项/子项的复杂拓扑结构,我们提出了双向自适应采样和关节处的修改后的法线计算。该方法已经应用于大脑血管树、肝脏血管树和主动脉血管树。实验结果表明,它可以在近似中获得具有更少多边形的高质量表面可视化。