Department of Automation, Tsinghua University, Beijing 100084, China.
IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):945-57. doi: 10.1109/TPAMI.2010.164.
Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.
掌纹是一种很有前途的生物特征,可用于访问控制和法医应用。先前的掌纹识别研究主要集中在低分辨率(约 100 ppi)掌纹上。但是对于高安全性应用(例如法医使用),需要高分辨率的掌纹(500 ppi 或更高),以便从中提取更多有用的信息。在本文中,我们提出了一种新的高分辨率掌纹识别算法。该算法的主要贡献包括以下几点:1)使用多种特征,即细节点、密度、方向和主纹线,用于掌纹识别,可显著提高传统算法的匹配性能。2)设计了一种基于质量和自适应的方向场估计算法,在有大量折痕的区域中比现有算法表现更好。3)用于识别应用的新型融合方案,比传统融合方法(例如加权和规则、支持向量机或 Neyman-Pearson 规则)表现更好。此外,我们分析了不同特征组合的区分能力,发现密度对于掌纹识别非常有用。在包含 14576 个完整掌纹的数据库上的实验结果表明,所提出的算法具有良好的性能。在验证情况下,识别系统的误拒率(FRR)为 16%,比误接受率(FAR)为 10^-5 时现有的最佳算法低 17%,而在识别实验中,排名第一的活体扫描部分掌纹识别率从 82.0%提高到 91.7%。