IEEE Trans Image Process. 2017 Sep;26(9):4483-4498. doi: 10.1109/TIP.2017.2705424. Epub 2017 May 18.
Direction information serves as one of the most important features for palmprint recognition. In the past decade, many effective direction representation (DR)-based methods have been proposed and achieved promising recognition performance. However, due to an incomplete understanding for DR, these methods only extract DR in one direction level and one scale. Hence, they did not fully utilize all potentials of DR. In addition, most researchers only focused on the DR extraction in spatial coding domain, and rarely considered the methods in frequency domain. In this paper, we propose a general framework for DR-based method named complete DR (CDR), which reveals DR by a comprehensive and complete way. Different from traditional methods, CDR emphasizes the use of direction information with strategies of multi-scale, multi-direction level, multi-region, as well as feature selection or learning. This way, CDR subsumes previous methods as special cases. Moreover, thanks to its new insight, CDR can guide the design of new DR-based methods toward better performance. Motived this way, we propose a novel palmprint recognition algorithm in frequency domain. First, we extract CDR using multi-scale modified finite radon transformation. Then, an effective correlation filter, namely, band-limited phase-only correlation, is explored for pattern matching. To remove feature redundancy, the sequential forward selection method is used to select a small number of CDR images. Finally, the matching scores obtained from different selected features are integrated using score-level-fusion. Experiments demonstrate that our method can achieve better recognition accuracy than the other state-of-the-art methods. More importantly, it has fast matching speed, making it quite suitable for the large-scale identification applications.
方向信息是掌纹识别的最重要特征之一。在过去的十年中,已经提出了许多有效的方向表示(DR)方法,并取得了有希望的识别性能。然而,由于对 DR 的理解不完整,这些方法仅在一个方向级别和一个尺度上提取 DR。因此,它们没有充分利用 DR 的所有潜力。此外,大多数研究人员仅关注空间编码域中的 DR 提取,很少考虑频域中的方法。在本文中,我们提出了一种名为完整 DR(CDR)的基于 DR 的方法的通用框架,该框架以全面完整的方式揭示 DR。与传统方法不同,CDR 强调使用多尺度、多方向级别、多区域以及特征选择或学习的方向信息策略。这样,CDR 就包含了以前的方法作为特例。此外,由于其新的见解,CDR 可以指导新的基于 DR 的方法的设计以获得更好的性能。受此启发,我们提出了一种新的频域掌纹识别算法。首先,我们使用多尺度改进有限 Radon 变换提取 CDR。然后,探索了一种有效的相关滤波器,即带限相位唯一相关,用于模式匹配。为了去除特征冗余,使用顺序前向选择方法选择少量的 CDR 图像。最后,使用基于得分的融合方法来整合来自不同选择特征的匹配得分。实验表明,我们的方法可以比其他最先进的方法获得更好的识别精度。更重要的是,它具有快速的匹配速度,使其非常适合大规模识别应用。