Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei 230031, China.
Sensors (Basel). 2012;12(6):7938-64. doi: 10.3390/s120607938. Epub 2012 Jun 8.
In this paper, the problem of Palmprint Recognition Across Different Devices (PRADD) is investigated, which has not been well studied so far. Since there is no publicly available PRADD image database, we created a non-contact PRADD image database containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two smart-phones. Due to the non-contact image acquisition used, rotation and scale changes between different images captured from a same palm are inevitable. We propose a robust method to calculate the palm width, which can be effectively used for scale normalization of palmprints. On this PRADD image database, we evaluate the recognition performance of three different methods, i.e., subspace learning method, correlation method, and orientation coding based method, respectively. Experiments results show that orientation coding based methods achieved promising recognition performance for PRADD.
本文研究了尚未得到充分研究的跨设备掌纹识别(PRADD)问题。由于目前没有公开的 PRADD 图像数据库,我们创建了一个非接触式 PRADD 灰度图像数据库,其中包含使用三种设备(即一台数码相机和两部智能手机)从 100 个对象捕获的 12000 个图像。由于使用了非接触式图像采集,因此从同一手掌捕获的不同图像之间必然会发生旋转和比例变化。我们提出了一种稳健的方法来计算手掌宽度,可有效地用于掌纹的比例归一化。在这个 PRADD 图像数据库上,我们分别评估了三种不同方法的识别性能,即子空间学习方法、相关方法和基于方向编码的方法。实验结果表明,基于方向编码的方法在 PRADD 方面取得了有前景的识别性能。