Dietzel Matthias, Baltzer Pascal A T, Vag Tibor, Gröschel Tobias, Gajda Mieczyslaw, Camara Oumar, Kaiser Werner A
Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Jena, Germany.
Acta Radiol. 2010 Oct;51(8):885-94. doi: 10.3109/02841851.2010.504232.
The presence of lymph node metastases (LNMs) is one of the most important prognostic factors in breast cancer.
To correlate a detailed catalog of 17 descriptors in breast MRI (bMRI) with the presence of LNMs and to identify useful combinations of such descriptors for the prediction of LNMs using a dedicated decision tree.
A standardized protocol and study design was applied in this IRB-approved study (T1-weighted FLASH; 0.1 mmol/kg body weight Gd-DTPA; T2-weighted TSE; histological verification after bMRI). Two experienced radiologists performed prospective evaluation of the previously acquired examination in consensus. In every lesion 17 previously published descriptors were assessed. Subgroups of primary breast cancers with (N+: 97) and without LNM were created (N-: 253). The prevalence and diagnostic accuracy of each descriptor were correlated with the presence of LNM (chi-square test; diagnostic odds ratio/DOR). To identify useful combinations of descriptors for the prediction of LNM a chi-squared automatic interaction detection (CHAID) decision tree was applied.
Seven of 17 descriptors were significantly associated with LNMs. The most accurate were "Skin thickening" (P < 0.001; DOR 5.9) and "Internal enhancement" (P < 0.001; DOR <or=13.7). The CHAID decision tree identified useful combinations of descriptors: "Skin thickening" plus "Destruction of nipple line" raised the probability of N+ by 40% (P< 0.05). In case of absence of "Skin thickening", "Edema", and "Irregular margins", the likelihood of N+ was 0% (P<0.05).
Our data demonstrate the close association of selected breast MRI descriptors with nodal status. If present, such descriptors can be used - as stand alone or in combination - to accurately predict LNM and to stratify the patient's prognosis.
淋巴结转移(LNMs)的存在是乳腺癌最重要的预后因素之一。
将乳腺MRI(bMRI)中17个描述符的详细目录与LNMs的存在相关联,并使用专用决策树识别这些描述符的有用组合以预测LNMs。
在这项经机构审查委员会批准的研究中应用了标准化方案和研究设计(T1加权快速低角度激发序列;0.1 mmol/kg体重钆喷酸葡胺;T2加权快速自旋回波序列;bMRI后组织学验证)。两名经验丰富的放射科医生对先前获取的检查进行了前瞻性的一致评估。在每个病变中评估了17个先前发表的描述符。创建了有LNMs(N +:97)和无LNMs(N -:253)的原发性乳腺癌亚组。每个描述符的患病率和诊断准确性与LNMs的存在相关(卡方检验;诊断比值比/DOR)。为了识别用于预测LNMs的描述符的有用组合,应用了卡方自动交互检测(CHAID)决策树。
17个描述符中的7个与LNMs显著相关。最准确的是“皮肤增厚”(P < 0.001;DOR 5.9)和“内部强化”(P < 0.001;DOR≤13.7)。CHAID决策树识别出描述符的有用组合:“皮肤增厚”加“乳头线破坏”使N +的概率提高了40%(P < 0.05)。如果不存在“皮肤增厚”、“水肿”和“边缘不规则”,N +的可能性为0%(P < 0.05)。
我们的数据表明所选乳腺MRI描述符与淋巴结状态密切相关。如果存在,这些描述符可单独或组合使用,以准确预测LNMs并对患者预后进行分层。