Suppr超能文献

一种用于区分磁共振乳腺成像中良恶性病变的简单而稳健的分类树。

A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.

机构信息

Department of Radiology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.

出版信息

Eur Radiol. 2013 Aug;23(8):2051-60. doi: 10.1007/s00330-013-2804-3. Epub 2013 Apr 12.

Abstract

OBJECTIVES

In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM.

METHODS

A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree.

RESULTS

A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %.

CONCLUSIONS

The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %.

KEY POINTS

• A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.

摘要

目的

面对磁共振乳腺成像(MRM)中多种可用的诊断标准,需要一种实用的病变分类算法。这种算法应尽可能简单,并仅包含区分良恶性病变的重要独立病变特征。本研究旨在开发一种用于 MRM 中鉴别诊断的简单分类树。

方法

共对 1084 个经标准化 MRM 检查并经组织学验证的病变(648 个恶性,436 个良性)进行了研究。由 2 名读者对 17 个病变标准进行了共识评估。使用卡方自动交互检测(CHAID)方法进行分类分析。结果包括分类树中每个描述符组合的恶性概率。

结果

计算出了一个包含 5 个病变描述符(1,根征;2,延迟增强模式;3,边界、内部增强和水肿)的分类树,分支深度为 3。在所有 1084 个病变中,分别有 262 个(40.4%)和 106 个(24.3%)可以准确分类为恶性和良性,准确率均高于 95%。总的诊断准确率为 88.4%。

结论

分类算法将分类描述符的数量从 17 个减少到 5 个(29.4%),从而提高了分类准确性。超过三分之一的病变可以达到 95%以上的准确率进行分类。

关键点

• 开发了一种实用的算法,用于对磁共振乳腺成像中发现的病变进行分类。

• 由五个标准组成的简单决策树达到了 88.4%的高准确率。

• 与该方法独特的是,每个分类都与一定的诊断确定性相关。

• 在所有病例中,有 34%的病例达到了 95%以上的诊断确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验