Suppr超能文献

肿瘤内注射树突状细胞疫苗通过增强肿瘤中 CD8(+)T 细胞/调节性 T 细胞的比例,引发明显的抗肿瘤活性。

Significant anti-tumour activity of adoptively transferred T cells elicited by intratumoral dendritic cell vaccine injection through enhancing the ratio of CD8(+) T cell/regulatory T cells in tumour.

机构信息

Department of Molecular Biology and Key Laboratory of Experimental Animal, Hebei Medical University, Medical experimental Center, People's Hospital of Hebei Province, Shijiazhuang, China.

出版信息

Clin Exp Immunol. 2010 Oct;162(1):75-83. doi: 10.1111/j.1365-2249.2010.04226.x.

Abstract

We have shown that immunization with dendritic cells (DCs) pulsed with hepatitis B virus core antigen virus-like particles (HBc-VLP) packaging with cytosine-guanine dinucleotide (CpG) (HBc-VLP/CpG) alone were able to delay melanoma growth but not able to eradicate the established tumour in mice. We tested whether, by modulating the vaccination approaches and injection times, the anti-tumour activity could be enhanced. We used a B16-HBc melanoma murine model not only to compare the efficacy of DC vaccine immunized via footpads, intravenously or via intratumoral injections in treating melanoma and priming tumour-specific immune responses, but also to observe how DC vaccination could improve the efficacy of adoptively transferred T cells to induce an enhanced anti-tumour immune response. Our results indicate that, although all vaccination approaches were able to protect mice from developing melanoma, only three intratumoral injections of DCs could induce a significant anti-tumour response. Furthermore, the combination of intratumoral DC vaccination and adoptive T cell transfer led to a more robust anti-tumour response than the use of each treatment individually by increasing CD8(+) T cells or the ratio of CD8(+) T cell/regulatory T cells in the tumour site. Moreover, the combination vaccination induced tumour-specific immune responses that led to tumour regression and protected surviving mice from tumour rechallenge, which is attributed to an increase in CD127-expressing and interferon-γ-producing CD8(+) T cells. Taken together, these results indicate that repeated intratumoral DC vaccination not only induces expansion of antigen-specific T cells against tumour-associated antigens in tumour sites, but also leads to elimination of pre-established tumours, supporting this combined approach as a potent strategy for DC-based cancer immunotherapy.

摘要

我们已经证明,用乙型肝炎病毒核心抗原病毒样颗粒(HBc-VLP)包被胞嘧啶-鸟嘌呤二核苷酸(CpG)(HBc-VLP/CpG)脉冲的树突状细胞(DC)免疫,单独使用能够延迟黑色素瘤的生长,但不能根除小鼠体内已建立的肿瘤。我们测试了通过调节疫苗接种方法和注射时间,是否可以增强抗肿瘤活性。我们使用 B16-HBc 黑色素瘤小鼠模型,不仅比较了通过足底、静脉内或肿瘤内注射接种 DC 疫苗治疗黑色素瘤和启动肿瘤特异性免疫反应的功效,还观察了 DC 疫苗接种如何提高过继转移 T 细胞的功效,以诱导增强的抗肿瘤免疫反应。我们的结果表明,虽然所有疫苗接种方法都能够保护小鼠免受黑色素瘤的发展,但只有三次肿瘤内注射 DC 才能诱导出显著的抗肿瘤反应。此外,与单独使用每种治疗方法相比,肿瘤内 DC 疫苗接种和过继 T 细胞转移的联合使用通过增加肿瘤部位的 CD8+T 细胞或 CD8+T 细胞/调节性 T 细胞的比例,导致更强大的抗肿瘤反应。此外,联合疫苗接种诱导了肿瘤特异性免疫反应,导致肿瘤消退,并保护存活的小鼠免受肿瘤再挑战,这归因于 CD127 表达和干扰素-γ产生的 CD8+T 细胞的增加。总之,这些结果表明,重复肿瘤内 DC 疫苗接种不仅诱导肿瘤部位针对肿瘤相关抗原的抗原特异性 T 细胞扩增,而且还导致已建立的肿瘤消除,支持这种联合方法作为基于 DC 的癌症免疫治疗的有效策略。

相似文献

2
Augmented induction of CD8+ cytotoxic T-cell response and antitumor effect by DCs pulsed with virus-like particles packaging with CpG.
Cancer Lett. 2007 Oct 18;256(1):90-100. doi: 10.1016/j.canlet.2007.06.004. Epub 2007 Jul 25.
3
Effective induction of therapeutic antitumor immunity by dendritic cells coexpressing interleukin-18 and tumor antigen.
J Mol Med (Berl). 2003 Sep;81(9):585-96. doi: 10.1007/s00109-003-0472-5. Epub 2003 Aug 21.
4
Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo.
Cancer Res. 2004 Sep 15;64(18):6783-90. doi: 10.1158/0008-5472.CAN-04-1621.
7
Selective expansion of merocytic dendritic cells and CD8DCs confers anti-tumour effect of Fms-like tyrosine kinase 3-ligand treatment in vivo.
Clin Exp Immunol. 2011 Mar;163(3):381-91. doi: 10.1111/j.1365-2249.2010.04305.x. Epub 2011 Jan 14.
8
10
Combination vaccine of dendritic cells (DCs) and T cells effectively suppressed preestablished malignant melanoma in mice.
Cancer Lett. 2006 Aug 18;240(1):83-93. doi: 10.1016/j.canlet.2005.08.030. Epub 2005 Oct 24.

引用本文的文献

1
Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer.
Hum Vaccin Immunother. 2022 Nov 30;18(5):2060019. doi: 10.1080/21645515.2022.2060019. Epub 2022 Apr 25.
2
Cell Therapy: Types, Regulation, and Clinical Benefits.
Front Med (Lausanne). 2021 Nov 22;8:756029. doi: 10.3389/fmed.2021.756029. eCollection 2021.
3
Vaccines as Priming Tools for T Cell Therapy for Epithelial Cancers.
Cancers (Basel). 2021 Nov 19;13(22):5819. doi: 10.3390/cancers13225819.
7
Dendritic cells based immunotherapy.
Am J Cancer Res. 2017 Oct 1;7(10):2091-2102. eCollection 2017.
8
Single vs. combination immunotherapeutic strategies for glioma.
Expert Opin Biol Ther. 2017 May;17(5):543-554. doi: 10.1080/14712598.2017.1305353. Epub 2017 Mar 20.
10
Rationale for a Multimodality Strategy to Enhance the Efficacy of Dendritic Cell-Based Cancer Immunotherapy.
Front Immunol. 2015 Jun 2;6:271. doi: 10.3389/fimmu.2015.00271. eCollection 2015.

本文引用的文献

2
The tumor microenvironment and its role in promoting tumor growth.
Oncogene. 2008 Oct 6;27(45):5904-12. doi: 10.1038/onc.2008.271.
3
Immunotransplantation preferentially expands T-effector cells over T-regulatory cells and cures large lymphoma tumors.
Blood. 2009 Jan 1;113(1):85-94. doi: 10.1182/blood-2008-05-155457. Epub 2008 Sep 23.
4
Dendritic cells in vivo: a key target for a new vaccine science.
Immunity. 2008 Sep 19;29(3):319-24. doi: 10.1016/j.immuni.2008.08.001.
6
Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms.
Immunity. 2008 Aug 15;29(2):272-82. doi: 10.1016/j.immuni.2008.05.016. Epub 2008 Jul 24.
7
Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration.
Cancer Res. 2008 Apr 15;68(8):2993-3000. doi: 10.1158/0008-5472.CAN-07-5008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验