Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
J Biol Chem. 2010 Oct 29;285(44):33718-26. doi: 10.1074/jbc.M110.136846. Epub 2010 Aug 24.
It remains unclear how α-ketoisocaproate (KIC) and leucine are metabolized to stimulate insulin secretion. Mitochondrial BCATm (branched-chain aminotransferase) catalyzes reversible transamination of leucine and α-ketoglutarate to KIC and glutamate, the first step of leucine catabolism. We investigated the biochemical mechanisms of KIC and leucine-stimulated insulin secretion (KICSIS and LSIS, respectively) using BCATm(-/-) mice. In static incubation, BCATm disruption abolished insulin secretion by KIC, D,L-α-keto-β-methylvalerate, and α-ketocaproate without altering stimulation by glucose, leucine, or α-ketoglutarate. Similarly, during pancreas perfusions in BCATm(-/-) mice, glucose and arginine stimulated insulin release, whereas KICSIS was largely abolished. During islet perifusions, KIC and 2 mM glutamine caused robust dose-dependent insulin secretion in BCATm(+/+) not BCATm(-/-) islets, whereas LSIS was unaffected. Consistently, in contrast to BCATm(+/+) islets, the increases of the ATP concentration and NADPH/NADP(+) ratio in response to KIC were largely blunted in BCATm(-/-) islets. Compared with nontreated islets, the combination of KIC/glutamine (10/2 mM) did not influence α-ketoglutarate concentrations but caused 120 and 33% increases in malate in BCATm(+/+) and BCATm(-/-) islets, respectively. Although leucine oxidation and KIC transamination were blocked in BCATm(-/-) islets, KIC oxidation was unaltered. These data indicate that KICSIS requires transamination of KIC and glutamate to leucine and α-ketoglutarate, respectively. LSIS does not require leucine catabolism and may be through leucine activation of glutamate dehydrogenase. Thus, KICSIS and LSIS occur by enhancing the metabolism of glutamine/glutamate to α-ketoglutarate, which, in turn, is metabolized to produce the intracellular signals such as ATP and NADPH for insulin secretion.
α-酮异己酸(KIC)和亮氨酸如何代谢以刺激胰岛素分泌尚不清楚。线粒体 BCATm(支链氨基酸转氨酶)催化亮氨酸和α-酮戊二酸的可逆转氨基反应,生成 KIC 和谷氨酸,这是亮氨酸分解代谢的第一步。我们使用 BCATm(-/-) 小鼠研究了 KIC 和亮氨酸刺激的胰岛素分泌(分别为 KICSIS 和 LSIS)的生化机制。在静态孵育中,BCATm 缺失消除了 KIC、D,L-α-酮-β-甲基缬氨酸和 α-酮己酸对胰岛素分泌的刺激作用,但不改变葡萄糖、亮氨酸或 α-酮戊二酸的刺激作用。同样,在 BCATm(-/-) 小鼠的胰腺灌注中,葡萄糖和精氨酸刺激胰岛素释放,而 KICSIS 则基本被消除。在胰岛灌注中,KIC 和 2 mM 谷氨酰胺在 BCATm(+/+)而不是 BCATm(-/-)胰岛中引起强烈的剂量依赖性胰岛素分泌,而 LSIS 不受影响。一致地,与 BCATm(+/+)胰岛相比,KIC 引起的 ATP 浓度和 NADPH/NADP(+) 比值的增加在 BCATm(-/-)胰岛中大大减弱。与未处理的胰岛相比,KIC/谷氨酰胺(10/2 mM)的组合不会影响 α-酮戊二酸的浓度,但分别使 BCATm(+/+)和 BCATm(-/-)胰岛中的苹果酸增加 120%和 33%。尽管 BCATm(-/-)胰岛中的亮氨酸氧化和 KIC 转氨作用被阻断,但 KIC 氧化未改变。这些数据表明,KICSIS 需要 KIC 和谷氨酸的转氨作用分别生成亮氨酸和α-酮戊二酸。LSIS 不需要亮氨酸分解代谢,可能是通过亮氨酸激活谷氨酸脱氢酶。因此,KICSIS 和 LSIS 通过增强谷氨酰胺/谷氨酸向α-酮戊二酸的代谢来发生,进而代谢产生 ATP 和 NADPH 等细胞内信号以促进胰岛素分泌。