Suppr超能文献

支链氨基酸与心血管疾病。

Branched-chain amino acids in cardiovascular disease.

机构信息

Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.

Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.

出版信息

Nat Rev Cardiol. 2023 Feb;20(2):77-89. doi: 10.1038/s41569-022-00760-3. Epub 2022 Sep 5.

Abstract

Research conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.

摘要

过去 15 年的研究取得了关键的见解,这些见解正在改变我们对支链氨基酸(BCAA)代谢系统生理学的理解,以及 BCAA 动态平衡与心血管健康之间密切关系的分子机制。快速发展的文献描绘了一幅复杂的图景,其中许多组织特异性和疾病特异性的 BCAA 调节模式引发了一系列不同的分子机制,这些机制将 BCAA 动态平衡的变化与心血管疾病的发病机制联系起来,包括心肌梗死、缺血再灌注损伤、动脉粥样硬化、高血压和心力衰竭。在这篇综述中,我们概述了调节 BCAA 丰度和代谢命运的主要因素的现有认识,强调了将 BCAA 动态平衡受损与心血管疾病联系起来的分子机制,讨论了将 BCAA 与各种心血管疾病状态联系起来的流行病学证据,并确定了需要进一步研究的当前知识空白。

相似文献

1
Branched-chain amino acids in cardiovascular disease.
Nat Rev Cardiol. 2023 Feb;20(2):77-89. doi: 10.1038/s41569-022-00760-3. Epub 2022 Sep 5.
2
Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.
Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1160-H1169. doi: 10.1152/ajpheart.00114.2016. Epub 2016 Aug 19.
3
Diabetes and branched-chain amino acids: What is the link?
J Diabetes. 2018 May;10(5):350-352. doi: 10.1111/1753-0407.12645. Epub 2018 Feb 13.
4
Branched-Chain Amino Acid Metabolism in the Failing Heart.
Cardiovasc Drugs Ther. 2023 Apr;37(2):413-420. doi: 10.1007/s10557-022-07320-4. Epub 2022 Feb 12.
5
Circulating Branched Chain Amino Acids and Cardiometabolic Disease.
J Am Heart Assoc. 2024 Apr 2;13(7):e031617. doi: 10.1161/JAHA.123.031617. Epub 2024 Mar 18.
6
The Role of Branched-chain Amino Acids and Their Metabolism in Cardiovascular Diseases.
J Cardiovasc Transl Res. 2024 Feb;17(1):85-90. doi: 10.1007/s12265-024-10479-w. Epub 2024 Jan 12.
8
Branched Chain Amino Acids.
Annu Rev Physiol. 2019 Feb 10;81:139-164. doi: 10.1146/annurev-physiol-020518-114455. Epub 2018 Nov 28.
9
Whole-body metabolic fate of branched-chain amino acids.
Biochem J. 2021 Feb 26;478(4):765-776. doi: 10.1042/BCJ20200686.

引用本文的文献

1
Cisd2 delays atrial aging via a modulation of calcium homeostasis that mitigates atrial myopathy.
Cell Commun Signal. 2025 Aug 21;23(1):376. doi: 10.1186/s12964-025-02377-8.
3
Machine Learning based Model Reveals the Metabolites Involved in Coronary Artery Disease.
Biomed Eng Comput Biol. 2025 Jul 8;16:11795972251352014. doi: 10.1177/11795972251352014. eCollection 2025.
7
Altered gut microbiota in erectile dysfunction patients: a pilot study.
Front Microbiol. 2025 Jun 5;16:1530014. doi: 10.3389/fmicb.2025.1530014. eCollection 2025.
8
Quantitation of BCAA and BCKA in plasma and patient-centric dried blood microsamples in a clinical setting.
Bioanalysis. 2025 Jun;17(11):707-723. doi: 10.1080/17576180.2025.2515008. Epub 2025 Jun 10.
9
Serum Amino Acid Variations in Obesity and Gestational Diabetes During Pregnancy.
Med Sci Monit. 2025 Jun 6;31:e948047. doi: 10.12659/MSM.948047.

本文引用的文献

1
Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes.
Cell Rep. 2023 Jun 27;42(6):112641. doi: 10.1016/j.celrep.2023.112641. Epub 2023 Jun 12.
3
Metabolomic and transcriptomic signatures of chemogenetic heart failure.
Am J Physiol Heart Circ Physiol. 2022 Mar 1;322(3):H451-H465. doi: 10.1152/ajpheart.00628.2021. Epub 2022 Jan 28.
4
Plasma metabolomic profiling in subclinical atherosclerosis: the Diabetes Heart Study.
Cardiovasc Diabetol. 2021 Dec 7;20(1):231. doi: 10.1186/s12933-021-01419-y.
5
Metabolomic Analysis of Coronary Heart Disease in an African American Cohort From the Jackson Heart Study.
JAMA Cardiol. 2022 Feb 1;7(2):184-194. doi: 10.1001/jamacardio.2021.4925.
6
Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart.
Metabolism. 2021 Nov;124:154871. doi: 10.1016/j.metabol.2021.154871. Epub 2021 Sep 1.
7
Chronically elevated branched chain amino acid levels are pro-arrhythmic.
Cardiovasc Res. 2022 Jun 22;118(7):1742-1757. doi: 10.1093/cvr/cvab207.
8
Insulin action, type 2 diabetes, and branched-chain amino acids: A two-way street.
Mol Metab. 2021 Oct;52:101261. doi: 10.1016/j.molmet.2021.101261. Epub 2021 May 24.
9
Branched chain amino acids selectively promote cardiac growth at the end of the awake period.
J Mol Cell Cardiol. 2021 Aug;157:31-44. doi: 10.1016/j.yjmcc.2021.04.005. Epub 2021 Apr 21.
10
Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice.
Nat Aging. 2021 Jan;1(1):73-86. doi: 10.1038/s43587-020-00006-2. Epub 2021 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验