Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, California 95618, USA.
J Biol Chem. 2010 Nov 5;285(45):34699-707. doi: 10.1074/jbc.M110.136192. Epub 2010 Aug 25.
Alterations in K(v)7-mediated currents in excitable cells result in several diseased conditions. A case in DFNA2, an autosomal dominant version of progressive hearing loss, involves degeneration of hair cells and spiral ganglion neurons (SGNs) from basal to apical cochlea, manifesting as high-to-low frequency hearing loss, and has been ascribed to mutations in K(v)7.4 channels. Analyses of the cellular mechanisms of K(v)7.4 mutations and progressive degeneration of SGNs have been hampered by the paucity of functional data on the role K(v)7 channels play in young and adult neurons. To understand the cellular mechanisms of the disease in SGNs, we examined temporal (young, 0.5 months old, and senescent, 17 months old) and spatial (apical and basal) roles of K(v)7-mediated currents. We report that differential contribution of K(v)7 currents in mice SGNs results in distinct and profound variations of the membrane properties of basal versus apical neurons. The current produces a major impact on the resting membrane potential of basal neurons. Inhibition of the current promotes membrane depolarization, resulting in activation of Ca(2+) currents and a sustained rise in intracellular Ca(2+). Using TUNEL assay, we demonstrate that a sustained increase in intracellular Ca(2+) mediated by inhibition of K(v)7 current results in significant SGN apoptotic death. Thus, this study provides evidence of the cellular etiology and mechanisms of SGN degeneration in DFNA2.
可兴奋细胞中 K(v)7 介导的电流的改变导致了几种疾病状态。DFNA2 就是一个例子,它是进行性听力损失的常染色体显性遗传版本,涉及从耳蜗基底到顶端的毛细胞和螺旋神经节神经元 (SGN) 的退化,表现为高频到低频听力损失,并归因于 K(v)7.4 通道的突变。由于缺乏 K(v)7 通道在年轻和成年神经元中作用的功能数据,因此对 K(v)7.4 突变和 SGN 进行性退化的细胞机制的分析受到了阻碍。为了了解 SGN 中疾病的细胞机制,我们检查了 K(v)7 介导的电流的时间(年轻,0.5 个月大,和衰老,17 个月大)和空间(顶端和基底)作用。我们报告说,K(v)7 电流在小鼠 SGNs 中的差异贡献导致基底神经元与顶端神经元的膜特性产生明显而深刻的变化。该电流对基底神经元的静息膜电位有重大影响。抑制该电流会促进膜去极化,导致钙电流的激活和细胞内 Ca(2+)的持续升高。使用 TUNEL 测定,我们证明抑制 K(v)7 电流引起的细胞内 Ca(2+)持续增加导致 SGN 凋亡死亡显著增加。因此,这项研究为 DFNA2 中 SGN 退化的细胞病因和机制提供了证据。